
Joo-Young Kim
Bongjin Kim
Tony Tae-Hyoung Kim Editors

Processing-in-
Memory for AI
From Circuits to Systems

Processing-in-Memory for AI

Joo-Young Kim • Bongjin Kim
Tony Tae-Hyoung Kim
Editors

Processing-in-Memory
for AI
From Circuits to Systems

Editors
Joo-Young Kim
Korea Advanced Institute of Science and
Technology
Daejeon, Korea (Republic of)

Bongjin Kim
University of California
Santa Barbara, CA, USA

Tony Tae-Hyoung Kim
Nanyang Technological University
Nanyang, Singapore

ISBN 978-3-030-98780-0 ISBN 978-3-030-98781-7 (eBook)
https://doi.org/10.1007/978-3-030-98781-7

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2023
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-98781-7

Contents

1 Introduction . 1
Joo-Young Kim

2 Backgrounds . 15
Chengshuo Yu, Hyunjoon Kim, Bongjin Kim,
and Tony Tae-Hyoung Kim

3 SRAM-Based Processing-in-Memory (PIM) . 41
Hyunjoon Kim, Chengshuo Yu, and Bongjin Kim

4 DRAM-Based Processing-in-Memory . 65
Donghyuck Kim and Joo-Young Kim

5 ReRAM-Based Processing-in-Memory (PIM) . 93
Tony Tae-Hyoung Kim, Lu Lu, and Yuzong Chen

6 PIM for ML Training . 121
Jaehoon Heo and Joo-Young Kim

7 PIM Software Stack . 143
Donghyuck Kim and Joo-Young Kim

8 Conclusion . 161
Joo-Young Kim, Bongjin Kim, and Tony Tae-Hyoung Kim

v

Chapter 1
Introduction

Joo-Young Kim

1.1 Hardware Acceleration for Artificial Intelligence and
Machine Learning

Artificial intelligence (AI) and machine learning (ML) technology enable computers
to mimic the cognitive tasks believed to be what only humans can do, such as
recognition, understanding, and reasoning [1]. A deep ML model named AlexNet
[2], which uses eight layers in total, won the famous large-scale image recognition
competition called ImageNet by a significant margin over shallow ML models in
2012. Since then, deep learning (DL) revolution has been ignited and spread to
many other domains such as speech recognition [3], natural language processing
[4], virtual assistance [5], autonomous vehicle [6], and robotics [7]. With significant
successes in various domains, DL revolutionizes a wide range of industry sectors
such as information technology, mobile communication, automotive, and manufac-
turing [8]. However, as more industries adopt the new technology and more people
use it daily, we face an ever-increasing demand for a new type of hardware for the
workloads. Conventional hardware platforms such as CPU and GPU are not suitable
for the new workloads. CPUs cannot cope with the tremendous amount of data
transfers and computations required in the ML workloads, while GPUs consume
large amounts of power with high operating costs.

AI chip or accelerator is the hardware that enables faster and more energy-
efficient processing for AI workloads (Fig. 1.1). Over the past few years, many
AI accelerators have been developed to serve the new workloads, targeting from
battery-powered edge devices [9–11] to datacenter servers [12]. As McKinsey pre-
dicted in the report [13], the AI semiconductor industry is expected to grow 18–19%

J.-Y. Kim (�)
School of Electrical Engineering (E3-2), KAIST, Daejeon, South Korea
e-mail: jooyoung1203@kaist.ac.kr

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J.-Y. Kim et al. (eds.), Processing-in-Memory for AI,
https://doi.org/10.1007/978-3-030-98781-7_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98781-7_1&domain=pdf
mailto:jooyoung1203@kaist.ac.kr
https://doi.org/10.1007/978-3-030-98781-7_1

2 J.-Y. Kim

Fig. 1.1 AI chip and its market prediction

every year to 65 billion, accounting for about 19% in the entire semiconductor
market in 2025. So far, the AI hardware industry is led by big tech companies.
Google developed their own AI chip named tensor processing unit (TPU) that can
work with TensorFlow [14] software framework. Amazon developed Inferentia chip
[15] for high-performance ML inference. Microsoft’s BrainWave [16] uses FPGA
infrastructure to accelerate ML workloads at scale. Even an electric car maker
Tesla developed the full self-driving (FSD) chip for autonomous vehicles. There
are many start-up companies in this domain. Habana Labs, acquired by Intel in
late 2019, developed Gaudi processor for AI training. Graphcore has developed
intelligent processing unit (IPU) [17] and deployed in datacenters. Groq’s tensor
streaming processor [18] optimizes data streaming and computations with fixed task
scheduling. Cerabras’s wafer-scale engine [19] tries to use a whole wafer as a ML
processor to keep a large model without external memories.

1.2 Machine Learning Computations

In this section, we introduce the basic models of deep neural networks (DNNs)
and their computations. A DNN model is composed of multiple layers of artificial
neurons, where neurons of each layer are inter-connected with the neurons in the
neighbor layers. The mathematical model of the neuron comes from Frank Rosen-
blatt’s Perceptron [20] model, as shown in Fig. 1.2. Inspired by the human neuron
model, it receives multiple inputs among many input neurons and accumulates
their weighted sums with a bias. Then it decides the output through an activation
function, where the activation function is non-linear and differentiable, having a
step-like characteristic shape. As a result, the output of a neuron is expressed with
the following equation:

1 Introduction 3

Fig. 1.2 Artificial neuron: perceptron model

Fig. 1.3 Fully connected layer

y = f (w1x1 + w2x2 + ... + wnxn + b) (1.1)

Based on the network connection, there are three major layers in the DNN
models, which determines the actual computations: fully connected, convolutional,
and recurrent layer.

1.2.1 Fully Connected Layer

Figure 1.3 shows the fully connected layer that interconnects the neurons in the input
layer to the neurons in the next layer. The input vector is the values of input neurons,
a 3 × 1 vector in this case, and the output vector is the values of output neurons, a
4×1 vector. Each connection of the fully connected network between the two layers
represents a weight parameter in the model. For example, W01 represents a weight
parameter of the connection between the input neuron 0 and the output neuron 1.
Collectively, the network becomes a 4 × 3 weight matrix. In addition, each output
neuron has a bias, so the layer has 4×1 bias vector. For each output neuron, we can

4 J.-Y. Kim

Fig. 1.4 Convolutional layer

write the output value y using Eq. 1.1. As a result, the equations can be formulated
into a matrix-vector equation as follows:

y = f (Wx + b) (1.2)

If the model includes multiple layers, which is the case of deep neural networks, the
matrix operations will be cascaded one by one. Traditional multi-layer perceptron
(MLP) models as well as the latest transformer models [21] are based on the fully
connected layer.

1.2.2 Convolutional Layer

The convolutional layer iteratively performs 3-d convolution operations on the input
layer using multiple weight kernels to generate the output layer, as illustrated in
Fig. 1.4. The input layer has multiple 2-d input feature maps, sized H × H × C, and
the size of each kernel is K × K × C. For computation, it performs 3-d convolution
operations from top-left to bottom-right for each kernel with a stride of U . A single
convolution operation accumulates all the inner products between the input and the
kernel. As a result of scanning for a kernel, it gets a single output feature map sized
E × E. By repeating this process for all kernels, the convolutional layer produces
the final output layer, sized to E × E × M . The equation for an output point in the
convolutional layer is as follows:

1 Introduction 5

Fig. 1.5 Recurrent layer

O[u][x][y] = B[u] +
C−1∑

k=1

K−1∑

i=1

K−1∑

j=1

I[k][Ux + i][Uy + j]W[u][k][i][j],

0 ≤ u < M, 0 ≤ x, y < E,E = (H − R + U)

U

(1.3)

Many convolution neural network (CNN) models use a number of convolutional
layers with a few fully connected layers at the end for image classification and
recognition task [22].

1.2.3 Recurrent Layer

Figure 1.5 shows the recurrent layer that has a feedback loop from the output to
the input layer in the fully connected setting. In this layer, the cell state of the
previous timestamp affects the current state. Its computation is also matrix-vector
multiplication but involves multiple steps with dependency. Its cell and output value
are expressed as follows. The hyperbolic tangent is usually used for activation
function in the recurrent layer.

ht = f (Uhxt + Vhht−1 + bh),Ot = f (Whht + bo) (1.4)

Recurrent neural networks (RNNs) such as GRUs [23] and LSTMs [24] are based
on this type of layer and popularly used for speech recognition.

6 J.-Y. Kim

1.3 von Neumann Bottleneck

1.3.1 Memory Wall Problem

Von Neumann architecture [25] is a computer architecture proposed by John von
Neumann in 1945, which broadly consists of a compute unit that executes a program
written by a user and a memory unit that stores both the user’s program and
data required to run the program. Most modern computer systems, including CPU
and GPU, fall into this architecture. With the Moore’s law that states the number
of transistors on a computer chip doubles every 18 months [26] and the process
technology scaling, its compute performance has been rapidly improved, as shown
in Fig. 1.6. On the other hand, the memory device has been developed to increase
its capacity, not the performance. Therefore, the performance gap between the two
separated devices gets wider and wider, and it becomes a major performance issue
in the system. This memory wall problem causes the data movement issue or limits
the memory bandwidth between the compute and memory device. It is often called
von Neumann bottleneck because all the computers with von Neumann architecture
inevitably have this bottleneck simply because they have separated compute and
memory devices.

1.3.2 Latest AI Accelerators with High-Bandwidth Memories

The von Neumann bottleneck has been mitigated with a hierarchical memory
structure. Processors include the fastest but smallest SRAM-based cache on-chip
to leverage the temporal and spatial locality. Outside of the processor chip, there
exists the main memory of the system based on DRAM. DRAM is fast and has
a larger capacity than SRAM. After that, the system has solid-state drives (SSD)
for high storage capacity. However, as the DNN models get deeper and bigger to
the tera-bytes level, the ML workloads require even higher bandwidth between the
processor chip and the main memory. Even worse, the process technology scaling

Fig. 1.6 von Neumann Bottleneck and memory wall problem

1 Introduction 7

faces strong challenges with the end of Moore’s law below 10 nm technology node
[27].

To overcome the von Neumann bottleneck and the slow-down of process scaling,
many companies propose array-type architectures to accelerate data-intensive ML
processing along with 3-d stacking DRAM technology called high-bandwidth
memory (HBM) [28] to provide higher bandwidth between the compute and
memory devices. Google developed their own AI chip named TPU to serve the
inference and training workloads in datacenters with a better cost and energy
efficiency [12]. Intel recently released the NNP-T processor [29] and Habana Labs
Gaudi processor [30] for training workloads. Start-up companies such as Graphcore
[31] and Groq [18] are also based on this architecture. However, although these
AI accelerators with HBM technology can mitigate the bandwidth bottleneck up
to a couple TB/s level, they cannot address it eventually as they still fall into von
Neumann architecture. In addition, the HBM suffers from high-power dissipation
and low capacity [32]. Table 1.1 shows the summary of the hardware specifications
of the latest AI accelerators [33].

1.4 Processing-in-Memory Architecture

1.4.1 Paradigm Shift from Compute to Memory

An architectural paradigm called processing-in-memory (PIM) takes an alternative
approach to the conventional von Neumann architecture to solve the memory
bandwidth problem. It is not a new concept, as it is first introduced in 1970s [34] and
has many subsequent works [35, 36]. Recently, PIM has gotten increasing attention
amid the memory wall crisis caused by modern ML applications requiring high
bandwidths.

In PIM architecture, instead of fetching data from the memory unit to compute
unit, data stays in the memory, while the merged logic performs computations in
place without moving data outside. As Fig. 1.7 illustrates, this approach is a radical
change in the computer architecture; the traditional and near-memory architectures
basically have the same memory hierarchy to utilize the external memory bandwidth
efficiently, but the PIM merges the compute and memory devices so that it does
not have any problems in external data movement. This fundamental shift from
compute-centric architecture to memory-centric or combined architecture gets
much attention to solve the von Neumann bottleneck, especially for data-intensive
applications such as AI and ML. On top of performance improvement, it saves
significant energy by replacing expensive external data transfers with on-chip data
movements.

8 J.-Y. Kim

Ta
bl
e
1.
1

L
at

es
tA

I
ac

ce
le

ra
to

rs

M
et

ri
c

G
oo

gl
e

T
PU

v3
N

vi
di

a
V

10
0

N
vi

di
a

A
10

0
C

er
eb

ra
s

W
SE

G
ra

ph
C

or
e

IP
U

1
G

ra
ph

C
or

e
IP

U
2

Te
ch

no
lo

gy
no

de
12

nm
(1

6
nm

es
t.)

T
SM

C
12

nm
T

SM
C

7
nm

T
SM

C
16

nm
T

SM
C

16
nm

T
SM

C
7

nm

D
ie

ar
ea

(m
m

2
)

64
8

(6
00

es
t.)

81
5

82
6

46
22

5
90

0
(e

st
.)

82
3

T
ra

ns
is

to
r

co
un

t
(B

)
11

(e
st

.)
21

54
.2

12
00

23
.6

59
.4

A
rc

hi
te

ct
ur

e
Sy

st
ol

ic
ar

ra
y

SI
M

D
+

T
C

SI
M

D
+

T
C

M
IM

D
M

IM
D

M
IM

D

T
he

or
et

ic
al

T
FL

O
PS

(1
6-

bi
t

m
ix

ed
pr

ec
is

io
n)

12
3

12
5

31
2

25
00

12
5

25
0

Fr
eq

(G
H

z)
0.

92
1.

5
1.

4
U

nk
no

w
n

1.
6

U
nk

no
w

n

D
R

A
M

ca
pa

ci
ty

(G
B

)
32

32
80

N
/A

N
/A

11
2

D
R

A
M

B
W

(G
B

/s
)

90
0

90
0

20
39

N
/A

N
/A

64
(e

st
.)

To
ta

lS
R

A
M

ca
pa

ci
ty

32
M

B
36

M
B

(R
F+

L
1+

L
2)

87
M

B
(R

F+
L

1+
L

2)
18

G
B

30
0

M
B

90
0

M
B

SR
A

M
B

W
(T

B
/s

)
U

nk
no

w
n

22
4

@
R

F
+1

4
@

L
1

+3
@

L
2

60
8

@
R

F
+1

9
@

L
1

+7
@

L
2

90
00

45
47

.5

M
ax

T
D

P
(W

)
45

0
45

0
40

0
20

K
15

0
15

0
(e

st
.)

1 Introduction 9

Fig. 1.7 Processing-in-memory architecture

1.4.2 Challenges

Although it looks promising, PIM has many challenges as it needs to integrate logic
units into the memory module. The three notable challenges in PIM design are
process accessibility, architecting, and designing considering physical constraints,
and software stack and usability.

Among many memory technologies, SRAM is the only memory type that we
can build using a commercially available logic process. This is why many PIM
prototypes are based on SRAM [37–40]. It is possible to fabricate with a logic
process and easy to customize both memory cell and peripheral circuits. As the cell
size is the biggest among others, SRAM-based PIM has the least area restriction
on the logic integration. Except SRAM, DRAM and non-volatile memory (NVM)
processes are difficult to access. Memory vendors such as Samsung, SK Hynix, and
Micron have their own memory processes, but they are not open to outside. Since the
process design kit (PDK) is not accessible, most researchers cannot even simulate
the basic circuits. There have been many PIM architecture proposals for DRAM
[41, 42]; however, they only evaluate the architectures at a performance simulator
level without much physical design. Since the DRAM process is vastly different
from the logic process, focusing on increasing cell capacity and cell density, it is
hard to convince that the proposed PIM architectures are feasible to be fabricated
with only simulations.

It is imperative for chip designers to choose what function they should put into
the memory in the PIM design. They cannot implement various functions or too
generic logic as the silicon area is limited. In addition, the chip will lose the memory
capacity for the area of the logic merged. Another challenge is that the logic design
should be physically aligned with the memory cell design to maximize the internal
bandwidth.

10 J.-Y. Kim

Table 1.2 PIM opportunities and challenges

PIM opportunities PIM challenges

1. Non-von Neuman Architecture
→ Can solve von Neumann bottleneck.

2. Converged Logic + Memory
→ Can achieve high internal bandwidth.

3. Suitable for data-intensive workloads
→ Good for AI/ML applications

4. Little external data movement
→ Can achieve high energy efficiency

1. Process accessibility
: Memory process is difficult to use

2. Limited area resource
: What function logic should the designer
add?

3. Physical layout constraint
: To maximize the internal compute
bandwidth

4. SW stack for PIM deployment
: Revisit a whole SW stack for wide
adoption

The software stack is the last hurdle in the PIM design. It is essential for the wide-
spreading adoption of PIM as a new device. Unlike traditional memory devices,
PIM is not a passive device anymore as it can perform logic operations at the same
time. What this means is that we need a fundamental change in the software side
either. For real PIM system optimizations, we need to revisit a whole software stack,
including programming language, compiler, driver, and run-time. Otherwise, it will
not be able to outperform the existing von Neumann computer’s performance and
usability. Table 1.2 summarizes the opportunities and challenges of PIM technology.

1.5 Book Organization

This book organizes as follows. In Chap. 2, we study the backgrounds of the
PIM technology, including basic memory operations of various memories such as
SRAM, DRAM, and Resistive RAM (ReRAM). We also discuss the PIM’s design
constructions and approaches in this chapter. From Chaps. 3–5, we will investigate
significant PIM designs in the major memory technologies: SRAM, DRAM, and
ReRAM. Each chapter will cover comprehensive design technologies required for
PIM, including in-memory circuit processing, memory macro design, data mapping
strategy, and architecture. In Chap. 6, we will focus on the PIMs designed for
ML training. We will discuss the systems side of PIM, including software and
programming interface, in Chap. 7, for the wide adoption of the technology. Finally,
we will conclude our book with future remarks in Chap. 8.

References

1. Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436–444 (2015)
2. A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional

neural networks. Adv. Neural Inform. Process. Syst. 25, 1097–1105 (2012)

1 Introduction 11

3. G. Hinton, L. Deng, D. Yu, G.E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, T.N. Sainath, B. Kingsbury, Deep neural networks for acoustic modeling in speech
recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29(6), 82–97
(2012)

4. Y. Goldberg, Neural network methods for natural language processing. Synth. Lect. Hum.
Lang. Technol. 10(1), 1–309 (2017)

5. V. Kepuska, G. Bohouta, Next-generation of virtual personal assistants (Microsoft Cortana,
Apple Siri, Amazon Alexa and Google Home), In 2018 IEEE 8th Annual Computing and
Communication Workshop and Conference (CCWC). IEEE, Piscataway (2018), pp. 99–103

6. M. Teichmann, M. Weber, M. Zoellner, R. Cipolla, R. Urtasun, MultiNet: real-time joint
semantic reasoning for autonomous driving, in 2018 IEEE Intelligent Vehicles Symposium (IV).
IEEE, Piscataway (2018), pp. 1013–1020

7. H.A. Pierson, M.S. Gashler, Deep learning in robotics: a review of recent research. Adv. Robot.
31(16), 821–835 (2017)

8. M.I. Jordan, T.M. Mitchell, Machine learning: trends, perspectives, and prospects. Science
349(6245), 255–260 (2015)

9. Y.H. Chen, T. Krishna, J.S. Emer, V. Sze, Eyeriss: an energy-efficient reconfigurable accel-
erator for deep convolutional neural networks. IEEE J. Solid-State Circuits 52(1), 127–138
(2016)

10. Z. Yuan, Y. Liu, J. Yue, Y. Yang, J. Wang, X. Feng, J. Zhao, X. Li, H. Yang, STICKER: an
energy-efficient multi-sparsity compatible accelerator for convolutional neural networks in 65-
nm CMOS. IEEE J. Solid-State Circuits 55(2), 465–477 (2019)

11. J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, H.J. Yoo, UNPU: A 50.6 TOPS/W unified deep
neural network accelerator with 1b-to-16b fully-variable weight bit-precision, in 2018 IEEE
International Solid-State Circuits Conference-(ISSCC). IEEE, Piscataway (2018), pp. 218–220

12. N.P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N.
Boden, A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau,
J. Dean, B. Gelb, T.V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C.R. Ho, D.
Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D.
Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A.
Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami,
R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek,
E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan,
G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, D.H.
Yoon, In-datacenter performance analysis of a tensor processing unit, in Proceedings of the
44th Annual International Symposium on Computer Architecture (2017), pp. 1–12

13. G. Batra, Z. Jacobson, S. Madhav, A. Queirolo, N. Santhanam, Artificial-Intelligence Hard-
ware: New Opportunities for Semiconductor Companies. McKinsey and Company (2019)

14. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G.
Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D.G. Murray, B. Steiner,
P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, X. Zheng, TensorFlow: a system for
large-scale machine learning, in 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16) (2016), pp. 265–283

15. Mitchell TM, Machine learning, in Amazon (2017). https://aws.amazon.com/machine-
learning/inferentia/. Accessed 21 Oct 2021

16. E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael, A. Caulfield, T. Massengill, M. Liu, D.
Lo, S. Alkalay, M. Haselman, M. Abeydeera, L. Adams, H. Angepat, C. Boehn, D. Chiou, O.
Firestein, A. Forin, K.S. Gatlin, M. Ghandi, S. Heil, K. Holohan, A. El Husseini, T. Juhasz, K.
Kagi, R.K. Kovvuri, S. Lanka, F. van Megen, D. Mukhortov, P. Patel, B. Perez, A.G. Rapsang,
S.K. Reinhardt, B.D. Rouhani, A. Sapek, R. Seera, S. Shekar, B. Sridharan, G. Weisz, L.
Woods, P.Y. Xiao, D. Zhang, R. Zhao, D. Burger, Serving DNNs in real time at datacenter
scale with project brainwave. iEEE Micro 38(2), 8–20 (2018)

17. Ltd G IPU processors, in: IPU Processors. https://www.graphcore.ai/products/ipu. Accessed
21 Oct 2021

https://aws.amazon.com/machine-learning/inferentia/
https://aws.amazon.com/machine-learning/inferentia/
https://www.graphcore.ai/products/ipu

12 J.-Y. Kim

18. D. Abts, J. Ross, J. Sparling, M. Wong-VanHaren, M. Baker, T. Hawkins, B. Kurtz, Think
fast: a tensor streaming processor (TSP) for accelerating deep learning workloads, in 2020
ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA). IEEE,
Piscataway (2020), pp. 145–158

19. Product—chip. in Cerebras (2021). https://cerebras.net/chip/. Accessed 21 Oct 2021
20. F. Rosenblatt, The perceptron: a probabilistic model for information storage and organization

in the brain. Psychol. Rev. 65(6), 386 (1958)
21. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, I.

Polosukhin, Attention is all you need, in Advances in Neural Information Processing Systems
(2017), pp. 5998–6008

22. S. Lawrence, C.L. Giles, A.C. Tsoi, A.D. Back, Face recognition: a convolutional neural-
network approach. IEEE Trans. Neural Netw. 8(1), 98–113 (1997)

23. K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio,
Learning phrase representations using RNN encoder-decoder for statistical machine translation
(2014). arXiv preprint arXiv:1406.1078

24. F.A. Gers, J. Schmidhuber, Recurrent nets that time and count, in Proceedings of the
IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural
Computing: New Challenges and Perspectives for the New Millennium, vol. 3. IEEE, Piscat-
away (2000), pp. 189–194

25. J. Von Neumann, First draft of a report on the EDVAC. IEEE Ann. Hist. Comput. 15(4), 27–75
(1993)

26. G.E. Moore, Cramming more components onto integrated circuits (1965)
27. M.M. Waldrop, The chips are down for Moore’s law. Nat. News 530(7589), 144 (2016)
28. D.U. Lee, K.W. Kim, K.W. Kim, K.S. Lee, S.J. Byeon, J.H. Kim, J.H. Cho, J. Lee, J.H.

Chun, 25.2 A 1.2 V 8 Gb 8-channel 128 GB/s high-bandwidth memory (HBM) stacked DRAM
with effective microbump I/O test methods using 29 nm process and TSV, in 2014 IEEE
International Solid-State Circuits Conference Digest of Technical Papers (ISSCC). IEEE,
Piscataway (2014), pp. 432–433

29. W. Yang, X. Zhang, Y. Tian, W. Wang, J.H. Xue, Q. Liao, Deep learning for single image
super-resolution: a brief review. IEEE Trans. Multimedia 21(12), 3106–3121 (2019)

30. B. Hickmann, J. Chen, M. Rotzin, A. Yang, M. Urbanski, S. Avancha, Intel Nervana neural
network processor-T (NNP-T) fused floating point many-term dot product, in 2020 IEEE 27th
Symposium on Computer Arithmetic (ARITH). IEEE, Piscataway (2020), pp. 133–136

31. Z. Jia, B. Tillman, M. Maggioni, D.P. Scarpazza, Dissecting the graphcore IPU architecture via
microbenchmarking (2019). arXiv preprint arXiv:1912.03413

32. N. Chatterjee, M. O’Connor, D. Lee, D.R. Johnson, S.W. Keckler, M. Rhu, W.J. Dally,
Architecting an energy-efficient DRAM system for GPUs, in 2017 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE, Piscataway (2017),
pp. 73–84

33. M. Khairy, TPU vs GPU vs Cerebras vs Graphcore: a fair comparison between ML hardware,
in Medium (2021). https://khairy2011.medium.com/tpu-vs-gpu-vs-cerebras-vs-graphcore-a-
fair-comparison-between-ml-hardware-3f5a19d89e38. Accessed 21 Oct 2021

34. H.S. Stone, A logic-in-memory computer. IEEE Trans. Comput. 100(1), 73–78 (1970)
35. D.G. Elliott, W.M. Snelgrove, M. Stumm, Computational RAM: a memory-SIMD hybrid and

its application to DSP, in Custom Integrated Circuits Conference, vol. 30. (1992), pp. 1–30
36. D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis, R. Thomas,

K. Yelick, Intelligent RAM (IRAM): chips that remember and compute, in 1997 IEEE
International Solids-State Circuits Conference. Digest of Technical Papers. IEEE, Piscataway
(1997), pp. 224–225

37. C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester, D. Blaauw, R. Das,
Neural cache: bit-serial in-cache acceleration of deep neural networks, in 2018 ACM/IEEE
45th Annual International Symposium on Computer Architecture (ISCA). IEEE, Piscataway
(2018), pp. 383–396

38. D. Fujiki, S. Mahlke, R. Das, Duality cache for data parallel acceleration, in Proceedings of
the 46th International Symposium on Computer Architecture (2019), pp. 397–410

https://cerebras.net/chip/
https://khairy2011.medium.com/tpu-vs-gpu-vs-cerebras-vs-graphcore-a-fair-comparison-between-ml-hardware-3f5a19d89e38
https://khairy2011.medium.com/tpu-vs-gpu-vs-cerebras-vs-graphcore-a-fair-comparison-between-ml-hardware-3f5a19d89e38

1 Introduction 13

39. J. Wang, X. Wang, C. Eckert, A. Subramaniyan, R. Das, D. Blaauw, D. Sylvester, 14.2 a
compute SRAM with bit-serial integer/floating-point operations for programmable in-memory
vector acceleration, in 2019 IEEE International Solid-State Circuits Conference-(ISSCC).
IEEE, Piscataway (2019), pp. 224–226

40. J.H. Kim, J. Lee, J. Lee, J. Heo, J.Y. Kim, Z-PIM: a sparsity-aware processing-in-memory
architecture with fully variable weight bit-precision for energy-efficient deep neural networks.
IEEE J. Solid-State Circuits 56(4), 1093–1104 (2021)

41. S. Li, D. Niu, K.T. Malladi, H. Zheng, B. Brennan, Y. Xie, DRISA: a DRAM-based
reconfigurable in-situ accelerator, in 2017 50th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, Piscataway (2017), pp. 288–301

42. P. Gu, X. Xie, Y. Ding, G. Chen, W. Zhang, D. Niu, Y. Xie, iPIM: Programmable in-memory
image processing accelerator using near-bank architecture, in 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA). IEEE (2020), pp. 804–817

Chapter 2
Backgrounds

Chengshuo Yu, Hyunjoon Kim, Bongjin Kim, and Tony Tae-Hyoung Kim

2.1 Basic Memory Operations

Dynamic random-access memory (DRAM) and static random-access memory
(SRAM) have played a critical role in modern VLSI systems. Semiconductor
technology scaling has increased fabricated memory density and provided higher
computing power, which is the main driving force of advancements in electronic
systems. However, as the semiconductor technology continues to be scaled, DRAM
and SRAM undergo various design challenges such as increased leakage current
and smaller sensing margin. Numerous research and development works have been
conducted to tackle these issues and provide market-required high performance and
low power memory solutions.

Mobile computing devices demand nonvolatile memory solutions, so that key
data can be stored even without power supply. FLASH has been developed
dramatically because of the explosive growth in the mobile electronics. However,
FLASH has been mainly used as storage devices, not as computing devices. In
general, it is well-known that flash memory has rewrite endurance of 106 times,
which is much lower than SRAM and DRAM. FLASH is also inferior to DRAM
and SRAM in the write speed and write power. Even though various technologies
have been developed to improve the endurance of FLASH and lower power write
power consumption, no breakthrough technologies are available that can make flash
memory comparable to DRAM and SRAM.

C. Yu · H. Kim · T. T.-H. Kim
Nanyang Technological University, Singapore, Singapore
e-mail: e190026@e.ntu.edu.sg; KIMH0003@e.ntu.edu.sg; thkim@ntu.edu.sg

B. Kim (�)
University of California Santa Barbara (UCSB), Santa Barbara, CA, USA
e-mail: bongjin@ucsb.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J.-Y. Kim et al. (eds.), Processing-in-Memory for AI,
https://doi.org/10.1007/978-3-030-98781-7_2

15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98781-7_2&domain=pdf
mailto:e190026@e.ntu.edu.sg
mailto:KIMH0003@e.ntu.edu.sg
mailto:thkim@ntu.edu.sg
mailto:bongjin@ucsb.edu
https://doi.org/10.1007/978-3-030-98781-7_2

16 C. Yu et al.

Table 2.1 Device characteristics of mainstream and emerging memory technologies [1]

Mainstream memories Emerging memories
SRAM DRAM NOR NAND MRAM PCRAM RRAM

Cell area >100F2 6F2 10F2 <4F2

(3D)
6–50F2 4–30F2 4–12F2

Multi-bit 1 1 2 3 1 2 2
Voltage <1 V <1 V >10 V >10 V <1.5 V 3 V 3 V
Read
time

~1 ns ~10 ns ~50 ns ~10
μs

<10 ns <10 ns <10 ns

Write
time

~1 ns ~10 ns 10 μs to
1 ms

0.1–1
ms

<10 ns ~50 ns <10 ns

Retention NA ~64 ms >10 year >10
year

>10 year >10 year >10 year

Endurance >1E16 >1E16 >1E5 >1E4 >1E15 >1E9 >1E6–
1E12

Write
energy
(/bit)

~fJ ~100 fJ ~100 pJ ~10 fJ ~0.1 pJ ~10 pJ ~0.1 pJ

F feature size of the lithography

Recently, various resistive nonvolatile memory devices such as magnetic RAM
(MRAM), ferroelectric RAM (FeRAM), phase change RAM (PCRAM), and resis-
tive RAM (ReRAM) have been introduced (Table 2.1). Even though they are based
on different physical mechanisms, they all realize memory operation by using two
different resistance values. Among them, ReRAM has gained high interest because
of its simple structure and compatibility to CMOS technology. Besides, ReRAM is
more reliable, faster, and consumes lower power than FLASH. Even though ReRAM
endurance is still lower than that of DRAM and SRAM, it can be applicable to
mobile applications, requiring non-volatility and moderate computing power.

This section introduces the basic operation of DRAM, SRAM, and ReRAM.
The basic memory operation will be also applied to processing-in-memory with
additional design considerations, which will be discussed in detail in other chapters.

2.1.1 SRAM Basics

Static random-access memory (SRAM) has been used as an embedded memory
solution in computing systems because of high performance, robustness, and low
fabrication cost [2]. SRAM is faster than DRAM because the cross-coupled inverters
in the SRAM cell can generate quicker and larger voltage swings at bitlines.
SRAM also receives row address and column address simultaneously while DRAM
receives row address and column address separately through the same address pins.
Therefore, SRAM shows smaller latency than DRAM. The cross-coupled inverters
in SRAM cells also maintain the stored data automatically when wordlines are

2 Backgrounds 17

Wordline

B
itl

in
e

/B
itl

in
e

VDD

GND

Driver

'0' '1'

L
H Wordline

B
itl

in
e

/B
itl

in
e

VDD

GND

L
H

'0' '1'
Q
‘1’ QB

‘0’

(a) (b)

Fig. 2.1 SRAM cell operation: (a) write and (b) read

turned off. Therefore, SRAM does not require refresh operation and write-back
operation. Another key advantage of SRAM is that SRAM is fully compatible
with CMOS process technology, which allows SRAM to be easily embedded with
computing blocks. However, as CMOS technology scaling continues, SRAM also
faces various challenges such as insufficient stability margin, increased leakage
current, and difficult supply voltage scaling [2]. Various design techniques have
been reported to address these issues [3–11].

Figure 2.1 shows the schematic of the conventional 6T SRAM cell and its write
and read operations. The typical SRAM cell consists of six transistors, forming two
cross-coupled inverters, and two access transistors. Write operation starts by loading
data a bitline pair, followed by turning on a wordline. Then, the data in the bitline
pair go to the SRAM cell nodes through the access transistors. For example, as
shown in Fig. 2.1a, if the data in Bitline is “0” and the data in /Bitline is “1,” Q will
be lowered through the access transistor and QB will be raised by /Bitline. Then, the
SRAM will store Q = “0.” SRAM write operation is mainly limited by the path of
writing “0” because the NMOS access transistors can pass low voltage better than
high voltage. Therefore, the access transistors need to be stronger than the PMOS
transistors to lower Q below the trip point of the inverters in the SRAM cell. SRAM
read operation starts by turning on a wordline after precharging bitline pairs. One
of the differential bitlines decreases depending on the data stored in the SRAM cell.
For example, in Fig. 2.1b, Bitline decreases and /Bitline remains at VDD since Q
is “0.” A sense amplifier amplifies the differential bitline voltage and generates an
output signal.

Figures 2.2 and 2.3 depict a sample SRAM architecture. In general, SRAM
consists of an array, row decoding, column multiplexing, sense amplifiers, write
drivers, and a controller. During read operation, an accessed cell generates differen-
tial voltage at a bitline pair. The differential bitline voltage is connected to a sense
amplifier through a column multiplexer. Unlike DRAM, SRAM has sense amplifiers
that are shared by multiple columns. Therefore, only one column is connected to
a sense amplifier for amplification. No write-back operation is necessary in the
unselected columns because SRAM cells can regenerate the stored data through the

18 C. Yu et al.

Fig. 2.2 SRAM data path Wordline

Bitline

L
H

DOUT

L

/DIN
/Bitline

CSel

DIN

lleC
M

ARS Pr
ec

ha
rg

e

SR
A

M
 C

el
l

Fig. 2.3 SRAM architecture

M x N SRAM Array

Column Mux.

Sense Amps & Write Drivers

.ce
D

woR
.lrtC

cross-coupled inverters. During write operation, write drivers send the write data to
the selected bitlines through the column multiplexer. However, the access transistors
in the unselected columns will be on, which can cause unwanted write operation. To
mitigate this, the bitlines of unselected columns are precharged to VDD, so that the
SRAM cells in the selected row and the unselected columns undergo read operation.

2.1.2 DRAM Basics

Dynamic random-access memory (DRAM) uses a capacitor to store charge for
memory operation [12, 13]. DRAM has been popular as a main memory solution
because of its compact cell structure and high performance. Figure 2.4 illustrates
the unit cell structure of a DRAM cell and its write and read operation principles.
A DRAM cell consists of one capacitor for data storage and one transistor for
access control. DRAM write operation (Fig. 2.4a) starts by loading data (“1” or
“0”) into the selected bitline, followed by turning on the selected wordline. Then, the
data loaded at the bitline is written into the selected capacitor through charging or
discharging. Once the write operation is complete, the selected wordline is disabled,

2 Backgrounds 19

Wordline

B
itl

in
e

Wordline

B
itl

in
eC

L
H VDD/2 VDD/2+ V

VDD/2- V

Δ

Δ
Icell

'0' or '1'

Icell0

Icell1

L
H

Driver SA

(a) (b)

Fig. 2.4 DRAM cell operation: (a) write and (b) read

and the written data is stored in the capacitor. However, the stored data at the
capacitor changes over time because of the leakage current flowing through the
access transistor. Multiple leakage paths are formed in the DRAM cell depending
on the stored voltage. The stored data will be lost once the stored voltage deviates
significantly from the original values and cannot be read through read operation.
To tackle this inevitable issue, refresh operation is involved in DRAM to maintain
the stored data. Refresh operation read data from selected DRAM cells and write
the read data back to the selected DRAM cells using strong “1” and “0.” DRAM
technologies have developed various techniques such as stacked capacitors [14, 15]
and trench capacitors [16, 17] that can achieve the same or larger capacitance after
technology scaling.

In DRAM, read operation starts by precharging the bitline with VDD/2. After
precharging, the bitline will be floating at VDD/2. Then, the selected wordline is
turned on, which will connect the capacitor node to the bitline through the access
transistor. The floating bitline voltage will increment or decrement slightly through
charge sharing, depending on the cell data. The final voltage formed by the charge
sharing can be calculated by the following expression.

Final Voltage = CBL × V DD
2 + CCELL × VCELL

CBL + CCELL
(2.1)

Here, CBL, CCELL, VCELL are the bitline capacitance, the cell capacitance, and
the cell voltage. Note that the bitline is assumed to be precharged to VDD/2. In
general, CBL is much larger than CCELL because a few hundred cells share a bitline.
Therefore, the number of cells per bitline should be determined carefully after
considering the minimum voltage swing requirement for reliable sensing.

Figure 2.5 depicts a sample DRAM data path. Before read operation, the
equalizer precharges the bitline pair with VDD/2. In read operation, a DRAM cell
increments or decrements the bitline voltage, and the bitline voltage is amplified
by a sense amplifier in each bitline. The amplified voltage will be transferred
to the output (DOUT) through the selection signal (BSel). The read operation
is destructive since the cell voltage after charge sharing will become Eq. (2.1).

20 C. Yu et al.

Wordline

Bitline

L
H

DOUT

L

/DOUT

Eq
ua

liz
er

/Bitline

CSel BSel

DIN

/DIN

Fig. 2.5 DRAM data path

Wordline_1

Wordline_n

Wordline_2

B
itl

in
e_

1

B
itl

in
e_

m

B
itl

in
e_

2

Fig. 2.6 DRAM array architecture

Therefore, the amplified voltage will also be written back to the selected DRAM
cell through the bitline to maintain the data.

A sample DRAM architecture is shown in Fig. 2.6. When a row is selected for
read operation by turning on a wordline, all the DRAM cells in the selected row
will generate voltage increment or decrement in the bitlines. The sense amplifier
in each bitline will amplify the small voltage change and generate read data. The
read data generated in all the columns cannot be sent to the output ports over one
clock cycle because of the limited data width. Therefore, it is necessary to use
multiple cycles for reading them out. If not, only a part of the read data will be sent
to the outputs. Writing operation also happens in the selected columns. However,
the access transistors in the unselected columns will be also on, generating voltage
increment or decrement in the bitlines. Therefore, it is necessary to activate the sense

2 Backgrounds 21

Top Electrode

Metal Oxide

Bo�om Electrode

Vp

SET to LRS

RESET to HRS

-1.5 -1.0 -0.5 0.5 1.0 1.50.0
10-8

10-3

Applied Voltage (V)
Cu

rr
en

t (
A)

10-7

10-6

10-5

10-4

Fig. 2.7 ReRAM device structure and I-V curve [22]

amplifiers and write the strong data after amplification back to the corresponding
DRAM cells.

2.1.3 ReRAM Basics

Resistive memory (ReRAM) is a promising low-power nonvolatile memory solu-
tion for various emerging applications such as Internet-of-Things (IoT), wearable
devices, and biomedical devices where batteries or energy harvesting devices supply
power. ReRAM utilizes two distinctive resistance values (HRS: high-resistance state
and LRS: low-resistance state) or more as data storage [18–21]. Figure 2.7 illustrates
a sample metal–insulator–metal ReRAM device structure and its I–V curve. As
shown in Fig. 2.7, the ReRAM device is a two-terminal device including a thick
oxide layer inserted between electrodes. The device switching between HRS and
LRS is controlled by the magnitude and the direction of the applied bias. Typically,
the switching from HRS to LRS is called SET, while the opposite switching is
named RESET. Before setting and resetting ReRAM, one additional operation is
necessary for actual scenarios called FORMING. After fabricating ReRAM devices,
they have very high resistance because of the oxide layer in the ReRAM devices. A
predefined high voltage is applied to the fresh ReRAM devices to form filaments in
the oxide layer. This step is necessary only one time per ReRAM device and called
FORMING. After FORMING, the ReRAM devices are in the HRS state and ready
to be SET. Even if the ReRAM device states are represented by HRS and LRS, the
actual resistance is affected by the applied bias as shown in Fig. 2.7 [22].

Various ReRAM cells have been reported depending on the required features
[23–30]. One of the most common ReRAM cells is the one-transistor and one-
resistor (1T1R) structure. Figure 2.8 explains the basic 1T1R ReRAM operations
such as SET, RESET, and read operation. SET requires VSET at the bitline (BL),

22 C. Yu et al.

WL

BL: VSET

-
+ VreramR

WL

SL: VRESET

BL: 0V

R

WL

SL: 0V

BL: VREAD

+
- Vreram R

SL: 0V

SET RESET READ

WL

SL: 0V

BL: IREAD

R

READ

Fig. 2.8 SET, RESET, and read operation of 1T1R ReRAM cell

GND at the source line (SL). Turning on the NMOS access transistor will make
current from BL to SL through the ReRAM device. This current will change the
ReRAM state from HRS to LRS. One important parameter to consider is the
ReRAM set voltage (VR-SET), which is the minimum required voltage across the
ReRAM device for SET. When current flows the 1T1R cell, the drain node of
the access transistor goes up. Therefore, only a part of VSET is observed across
the ReRAM device (Vreram). For proper SET, Vreram should be larger than VR-SET.
RESET occurs when BL is grounded and VRESET is applied to SL. In this case,
current flows in the opposite direction of the SET operation, and the ReRAM state
switches from LRS to HRS. Like SET, Vreram should be larger than the ReRAM
reset voltage (VR-RESET). However, the NMOS access transistor has larger voltage
drop and Vreram of RESET cab be smaller than Vreram of SET when the same voltage
is used at WL. Therefore, it is necessary to employ a technique that can reduce the
voltage drop through the access transistor smaller. Boosted WL voltage can improve
the voltage drop at the cost of reliability degradation. ReRAM read operation can
be implemented in two different modes (i.e., voltage mode and current mode). In
the voltage mode, BL is precharged to read voltage (VREAD) and is discharged with
different rates based on the ReRAM state. A sense amplifier detects the discharging
rates and produces an output signal. VREAD needs to be small, so that the ReRAM
state is not disturbed. Since the bias condition of the ReRAM read operation is
similar to SET, VREAD needs to be much smaller than VSET to avoid unwanted SET.
In the current mode, predefined read current (IREAD) is supplied to the selected
ReRAM cell. This current will generate voltages utilizing the ReRAM states, which
are sensed by amplifier. The current needs to be small enough to maintain the voltage
across the ReRAM device smaller than VR-SET with enough margins. It is also
necessary to regulate the voltage at BL below a certain level to prevent ReRAM
state disturbance.

Figure 2.9 describes a sample 1T1R ReRAM array architecture. A row is selected
by applying high voltage to the selected wordline. During SET and RESET, the
bitlines and the source lines need to be biased properly. The ReRAM architecture in
Fig. 2.9 cannot execute SET and RESET at the same time in the selected row. In the
SET operation, some ReRAM cells can be set while the others remain unchanged.

2 Backgrounds 23

WL_1

WL_n

WL_2

BL
_1

BL
_m

BL
_2

SL_1

SL_n

SL_2

Icell1 Icell2 Icell3

GND

HRS LRS HRS

Fig. 2.9 1T1R ReRAM array architecture

Similarly, some ReRAM cells will be reset in the RESET operation while the
rest will remain unchanged. This occurs because each source line is shared by a
row. SET and RESET can be executed simultaneously when the source lines run
vertically like the bitlines. Here, the bitline and the source line of each column
can be controlled independently, which facilitates SET and RESET over one cycle.
However, this architecture consumes more power than the architecture in Fig. 2.9.
Therefore, the ReRAM array architecture needs to be selected carefully based on
the system requirement. In the read operation, current will flow from each bitline to
the selected source line as shown in Fig. 2.9. The ReRAM states will determine the
magnitude of the current in each bitline. For example, Icell1 will be smaller than Icell2
in Fig. 2.9 since Icell1 and Icell2 are generated by HRS and LRS, respectively. The
current in each bitline will be compared with the average value of Icell1 and Icell2 by
a sense amplifier. The 1T1R ReRAM architecture have faced various challenges in
the point of scaling. First, the resistance of the ReRAM devices should be properly
defined so that the voltage across the ReRAM devices is large enough to set or reset.
If the ReRAM resistance is too low, the voltage drop across the access transistor
becomes large. This requires boosted wordline voltage, which will deteriorate the
ReRAM device reliability. The lowest ReRAM resistance value can be determined
by RESET. Another challenge is ReRAM device parameter scaling. It is well known
that ReRAM programming current does not show good scalability. ReRAM set and
reset voltages also need to be scaled in a similar rate of CMOS scaling. If ReRAM
device parameters are not salable, additional circuit techniques should address the
scalability issues. Figure 2.10 summarizes LRS, HRS, ReRAM set voltage, and
ReRAM reset voltage in literature. It is obvious that ReRAM set and reset voltages
are still too high when considering the supply voltage levels of the mainstream
CMOS technologies. They must be scaled below 1 V, so that they can be integrated
with advanced CMOS technologies.

24 C. Yu et al.

◙

105

104

103

1 2 3

◙

◙

◙

◙

◙◙

◙

◙

◙
S

RL
[Ω

]

Set Voltage [V]

108

107

106

105

-1-2-3-4

◙

◙

◙
◙

◙
◙

◙◙
◙

◙
◙

◙ H
R

S [Ω
]

Reset Voltage [V]

Fig. 2.10 Literature survey of LRS, HRS, ReRAM set voltage, and ReRAM reset voltage [31]

Fig. 2.11 ReRAM crossbar
architecture

WL_1

WL_2

WL_3

WL_4

B
L_

1

B
L_

2

B
L_

3

B
L_

4

Se
le

ct
or

Another popular ReRAM array is the crossbar architecture where ReRAM cells
without access transistors are sandwiched between rows and columns as illustrated
in Fig. 2.11 [32–34]. Since no transistor is used, the crossbar architecture provides
higher area efficiency compared to the 1T1R architecture. The ReRAM cell for
the crossbar architecture includes a selector device to cut the sneak current in the
unselected ReRAM cells. Programming and reading in the crossbar architecture
require more careful design considerations because of the sneak paths formed by
unselected ReRAM cells.

Figure 2.12a, b show two popular ReRAM programming schemes in the crossbar
architecture. The selected row and the selected column are biased with the writing
voltage (VDD in Fig. 2.12) and GND or vice versa relying on the intended pro-
gramming data. Programming current will flow through the selected cell switching
the resistance state. However, there are additional current paths whose current (i.e.,
sneak current) is not negligible. The additional current paths, named sneak paths,
can vary when employing different write schemes. In the VDD/2 writing scheme
(Fig. 2.12a), the unselected cells in the selected row and the unselected cells in the
selected column generate the sneak current. However, in the VDD/3 write scheme

2 Backgrounds 25

Fig. 2.12 ReRAM operation
in the crossbar: (a) write
using VDD/2, (b) write using
VDD/3, and (c) read
operation

GND

VREAD

VREAD

VREAD

Se
le

ct
ed

VREADVREAD VREAD VREAD

Cu
rr

en
t

(c)

VDD

VDD/2

VDD/2

VDD/2

Se
le

ct
ed

GNDVDD/2 VDD/2 VDD/2

Cu
rr

en
t

Sneak
Current

(a)

VDD

VDD/3

VDD/3

VDD/3

Se
le

ct
ed

GND2VDD/3 2VDD/3 2VDD/3
Cu

rr
en

t
Sneak

Current

(b)

26 C. Yu et al.

Bitline

H

DOUT

L

Reference

CSel

DIN

Ce
ll

Pr
ec

ha
rg

eCe
ll

R
Ce

ll

R
Ce

ll
H

WL[0] SL[1] WL[i] SL[i]

L

SA

Fig. 2.13 ReRAM data path

(Fig. 2.12b), all the unselected cells will contribute to the sneak current. However,
the total current required in each row driver will be less than that of the VDD/2 write
scheme. The VDD/3 write scheme has VDD/3 as the potential difference across the
unselected cells in the selected row, while the VDD/2 write scheme has VDD/2
for the same cells. The total amount of the sneak current is also data-dependent.
The programming current and the sneak current should be provided by the wordline
driver in each row. Therefore, the actual array size and the number of programmed
cells per cycle needs to be decided carefully after considering the driving capability
and the area of the driver. Figure 2.12c explains the read operation in the crossbar
architecture. GND is applied to the selected row, and the rest signals are connected
to read voltage (VREAD). Read current will flow from the bitlines to the grounded
selected row through the selected cells. In principle, all the data in the selected row
can be read out, which requires a sense amplifier in each column. In actual scenarios,
only a part of the row data will be transferred to sense amplifiers. However, all the
columns will still consume read current like SRAM.

Figure 2.13 shows a sample data path of ReRAM. When a wordline is selected,
the cells in the selected row will generate bitline voltages. Multiple columns share
a sense amplifier (SA), so a column multiplexer (CSel in Fig. 2.13) will connect the
bitline voltage of the selected column to the sense amplifier for further amplification.
Sense amplifiers need a reference voltage for comparison. The reference voltage
can be provided through an external signal after testing the fabricated ReRAM.
However, this requires comprehensive and time-consuming test sequences, which
is not practical. As shown in Fig. 2.13, it is more desirable to implement on-chip
reference voltage. One way of generating on-chip reference voltage is using ReRAM
replicas. In Fig. 2.13, the Replica ReRAM cell (RCell) is programmed to make the
reference voltage higher than the bitline voltage for LRS and lower than the bitline
voltage for HRS. The programming of RCell can be designed in various ways. One
common way is to use two RCells connected in parallel. One RCell is programmed

2 Backgrounds 27

with HRS, and the other RCell is programmed with LRS. In this case, the equivalent
resistance becomes as follows.

RREFERENCE = RHRS × RLRS

RHRS + RLRS
(2.2)

Another way is to use one RCell and program it with (RHRS + RLRS)/2. However,
this requires a complicated control on the programming voltage and the pulse width
for accurate programming. Therefore, it is more desirable to use multiple RCells
programmed with either HRS or LRS.

2.2 PIM Fundamentals

Processing-in-memory (PIM) has recently attracted significant attention as an
alternative computer architecture for the energy-efficient processing of massively
parallel arithmetic operations, enabling artificial intelligence and machine learning,
especially for battery-operated edge computing devices. Multiply-and-accumulate
(MAC) is a critical operation for processing artificial neural networks in edge
devices. For instance, a convolutional neural network (CNN) typically requires
billions of MAC operations to process a single image classification. Hence, the
design of MAC operation units plays a critical role in the overall performance and
energy consumption of the hardware accelerator based on PIM architecture.

Emerging memory devices, including a resistive random access memory
(ReRAM), a magneto resistive (MRAM), and a phase-change random access
memory (PCRAM), are possible candidates for the PIM implementation. They are
compact, and hence, they can achieve a high storage capacity and massively parallel
MAC operations. While the compact emerging memories are gaining significant
attractions for the PIM implementation, they are still not mature yet, and the cost
is too high. Hence, a traditional static random-access memory (SRAM) has been
most frequently used. Though it has a relatively large bitcell size, it has many other
advantages over the emerging candidates, such as scalability, logic compatibility,
low cost, and reliability.

A PIM macro can be implemented by reusing a classical two-dimensional array
of different cells (SRAM/DRAM/ReRAM), as shown in Fig. 2.14. Here, the MAC
operation of standard SRAM is described deeply as an example. A standard six-
transistor (6T) SRAM cell is used as a binary PIM unit to perform multiply and
accumulate operations. A binary input (i.e., 0 or +1) is applied to each macro
row and used as a multiplicand for all the SRAM cells in the same row. A binary
weight (i.e., −1 or +1) is stored in an SRAM cell, and then, it is multiplied by
the input applied to its wordline (WL). The accumulation is performed column-
by-column, and the accumulated result is a voltage difference between a bitline

28 C. Yu et al.

Standard 6T SRAM

B
L

WL

Q Qb

B
Lb

PIM Macro

Parallel Outputs

Pa
ra

lle
l I

np
ut

s

Input applied to Row

Column-based
Processing

SL

WL

B
L

WL

B
L

1T1R ReRAM 1T1C DRAM

Fig. 2.14 PIM macro using common memory cells (standard 6T SRAM/1T1C DRAM/1T1R
ReRAM)

(BL) and a bitline-bar (BLb). A ‘0’ input is represented by a WL high voltage,
which creates a discharging path from BL (or BLb) to the ground via an SRAM
internal node Q (or Qb). Note that all the bitlines (BLs and BLbs) are precharged to
high before the MAC operation is performed. Ideally, all the inputs are applied, and
the outputs are generated in parallel; hence, massively parallel binary SRAM PIM
operations are performed to maximize throughput and minimize latency. In practice,
the essential data conversion for input (digital-to-analog) and output (analog-to-
digital) eventually determines the overall performance of the designed PIM macro.

Using the PIM macro in Fig. 2.14, we can map and process the essential
arithmetic operations of a fully connected layer of deep neural networks (DNNs).
Figure 2.15a shows a pair of binary input and weight mapped to an SRAM cell and
an input pair. Binary multiplication is performed in the SRAM cell, and it results
in a unit analog accumulation as a voltage difference in the vertical bitlines (BL
and BLb). A group of input and weight pairs forms a dot-product, as shown in Fig.
2.15b, left. The dot-product is mapped to a column of the PIM macro, as shown in
Fig. 2.15b, right. The unit voltage differences from SRAM cells accumulate in the
column, which shares a BL and BLb pair. Finally, a vector-matrix multiplication
(i.e., a fully connected layer itself) is mapped to the entire PIM macro, where all
the multiplications and accumulates are performed in parallel, enabling massive
parallelism, as depicted in Fig. 2.15c.

The PIM macro can assign a convolutional layer by unrolling and mapping
high dimensional filter weights and input feature maps into the PIM macro. Figure
2.16a shows the mapping of a pair of input and weight from a convolutional layer
configuration into the macro. A two-dimensional (2D) filter weights are unrolled and
mapped into a column of four bitcells, as shown in Fig. 2.16b. A three-dimensional

2 Backgrounds 29

x1
w11

x1
w11

(a)

∙∙∙
x1

x2

x3

x16

∑ y1

y1

x1x2x3

x16

∙∙∙

(b)

x1x2x3

x16

∙∙∙

∙∙∙ y1y2y3y16

∙∙∙

x1

x2

x3

x16

∑

∑

∑

∑

∙∙∙∙∙∙

y1

y2

y3

y16

(c)

Fig. 2.15 Processing a fully connected layer using an SRAM-based PIM macro: (a) a multiplica-
tion; (b) a dot-product; (c) a vector-matrix multiplication

30 C. Yu et al.

x1
w11

···

#1

#16 #1

#16
x1w11

(a)

···

#1

#16 #1

#16
2x22x2

(b)

···

#1

#16 #1

#162x2x42x2x4

(c)

Fig. 2.16 Processing a convolutional layer using an SRAM-based PIM macro: (a) a multiplica-
tion; (b) a dot-product for a 2D filter; (c) a dot-product for a 3D filter; (d) a vector-matrix for a 4D
filter; (e) after 16 cycles of vector-matrix operations

2 Backgrounds 31

···
#1

#16 #1

#162x2x42x2x4

···

(d)

···

#1

#16 #1

#162x2x42x2x4

···

(e)

Fig. 2.16 (continued)

(3D) filter weights and input feature maps, composed of multiple channels of 2D
filters and input feature maps, are mapped to the entire column of the PIM macro, as
depicted in Fig. 2.16c. Note that the 3D filter and input feature map can be mapped
to multiple macro columns when the number of filter and input feature map element
pairs is larger than the number of bitcells in a single macro column. Figure 2.16d
expands one more dimension of the convolutional layer processing (i.e., output
channels or the channels of 3D filters), which can be processed in parallel using
multiple columns in the PIM macro. Each column output corresponds to a pixel of
each 2D output feature map. To complete the 3D output feature map generation, we
will reuse the same PIM macro and process while sliding the window of the input
feature map and complete the 3D output feature map, as illustrated in Fig. 2.16e.

32 C. Yu et al.

2.3 PIM Output Read-out

Input and output delivery of the PIM macro add extra operation latency and energy
consumption. Although I/O and periphery blocks in many state-of-the-art macro
designs are not emphasized, it is important to note their key component and their
associated challenges.

Among I/O and periphery blocks, a sense amplifier (SA) is one of the most
critical components in many SRAM based PIM macro designs that utilize bitline
discharge for MAC operation. Figure 2.17a is the standard latch-type SA with
the minimum number of transistors. However, the voltage drop across the pass
transistor causes limitation in input voltages, ultimately reducing the noise margin
and the voltage swing of the bitline. Figure 2.17b is an improved version of the
StrongARM Latch [35] to achieve low static power, produce higher output dynamic
range, and minimize the offset caused by the input differential pair. However, the
circuit operation phases include voltage gain, which introduces an amplified offset
issue from the VN and VP transistor mismatch. The separate SR latch added to the
right part of Fig. 2.17b is one of the techniques to cancel the offset by establishing
different discharge rates from the input pair. Figure 2.17c also provides offset
cancellation from programmable capacitors. However, to control the random offset
values, the number of capacitor switches increases and ultimately raises power
dissipation and lowers operation speed.

In many cases, SA output requires analog-to-digital (A2D) conversion as the
function of SA is an analog comparator. Thus, ADC is another critical block in PIM
macros that can directly affect the performance of the PIM macro.

Figure 2.18a describes the operating principle of a single-slope ADC operation
[37]. For illustration purposes, a column of bitcells is simplified to have 13 PIM
bitcells for a nine-input dot-product and a 2-bit single-slope column ADC. Thus, an
N-bit single-slope ADC requires 2N-1 cycles to complete single data conversion.

The operating principle of the binary-searching ADC [38] is shown in Fig. 2.18b.
The top 384 bitcells are simplified to a black box with a fixed dot-product result
(+27), and the following 96 bitcells are separated into two grounds for representing
weight “+1” (white boxes) and weight “−1” (gray boxes) when operating as the
binary-searching ADC. Each group has four input signals via RWLs that control 6,
6, 12, and 24 bitcells, respectively. The binary-searching ADC takes five cycles to
generate a 5-bit output code, as shown at the bottom of Fig. 2.18b.

The 4-bit flash ADC [36] has advantages in power consumption, performance,
and area tradeoff. Moreover, the 15 reference voltage levels of the flash ADC can
be easily adjusted by changing the voltage input of the resister diode ladder, so
that the read bitline (RBL) dynamic range can also be tunned easily. Note that
the Flash ADC comprises clocked comparators that can be readily implemented
in the column-pitch of the PIM macro. The connection of 15 comparators to 15 read
bitlines (RBLs) to serve as part of the computation caps is described in detail in Fig.
2.18c.

2 Backgrounds 33

BL
BLB

SAEN

VDD

SAEN

OUTB
OUT

(a)

VDD

CLK CLK

VP VN
VON

VOP

(b)

VDD

SAE

SAEB

SH

SH

SHSH

SH

SH

MPL

MNL

MPR

MNR

SAEB SAEB

OUT

VREFRBL

SR
Latch

(c)

Fig. 2.17 Detailed circuit of (a) standard latch-type sense amplifier, (b) an improved version of
the StrongARM latch [35], and (c) an offset cancellation latch [36]

34 C. Yu et al.

Charge-sharing ADC (CSH_ADC) shown in Fig. 2.18d is a serial integrating
ADC that can benefit from the narrow distribution ADC output code. In a PIM
macro architecture where energy and area efficiencies are prioritized over other per-
formance metrics, ADC architecture such as area-intensive SAR and power-hungry
flash ADCs are avoided. Biswas and Chandrakasan [39] claim that CSH_ADC is
suitable for the design, as the macro showed a narrow output distribution in its
partial CNN output, which is translated to low operation cycles that do not extend to
performance loss even with the serial nature of the ADC. The consisting blocks in
CSH_ADC can be broken into three parts: an integrator, an SA, and a logic block.
The capacitive charge-sharing aspect of the integrator is implemented by the replica
bitlines from the PIM cell, which can also be beneficial to track the variation in
bitline capacitance. The SA is a standard StrongARM latch-type architecture with
a PMOS input pair due to the expected common mode voltage levels of Vp and
Vn being closer to GND rail. The final logic block provides control signals PCHR,
EQp, EQn, and SA_EN using the global timing signals φ1 and φ2. ADC begins
its conversion process by first determining the sign of the output from the two
input nodes and followed by the replica bit-line precharge for equalize/integrate
operation. Integrate operation repeats until the SA output is flipped to flag the end-
of-conversion (EOC), and finally, the counter counts the equalize pulses (EQn) to
generate the digital value.

+1

D
ot

-P
ro

du
ct

 (D
P)

 /
A

DC
 R

ef
.

-1
-1
+1
-1
-1
+1
+1
-1
-1
-1
-1
+1

SA

OUTTH[2]=0

+1
-1
-1
+1
-1
-1
+1
+1
-1
-1
-1
+1
+1

SA

OUTTH[1]=0

+1
-1
-1
+1
-1
-1
+1
+1
-1
-1
+1
+1
+1

SA

OUTTH[0]=1

Ref=+2 Ref=0 Ref=-2

OUTB[1:0]=01

ADC Reference Sweep

D
ot

-
tcudorP

)dex iF(
.fe

R
CD

A
)pe e

wS
oT (

Cycle Number
0 1 2

DP=-1

O
U

T T
H
[2

]=
0

O
U

T T
H
[1

]=
0

O
U

T T
H
[0

]=
1

Ref=-2

Ref=0

Ref=+2

(a)

Fig. 2.18 Detailed circuit of (a) single-slope column ADC [37]; (b) binary-searching column
ADC [38]; (c) 4-bit flash ADC [36]; (d) charge-sharing ADC [39]

2 Backgrounds 35

Vpc h

VRBLL
VRBLR

Input Pattern

Cycle #
1 2 3 4 5

R
BL

 V
ol

ta
ge

D
ot

-P
ro

du
ct

(F
ix

ed
)

A
D

C
 F

ix
ed

 +
1

A
D

C
 F

ix
ed

 -1

Output = 10100

6x Bitcells [weight +1]

6x Bitcells [weight -1]

+27 +27 384x Bitcells
[Dot-product = +27]

Input = 0

Input = 1

Cycle #
1 2 3 4 5

SA

(b)

SA SA SA
[3:0]

SA SA SA SA
[5:4] [6] [7] [8] [10:9] [14:11]

SAE

R
BL

[3
]

R
BL

[2
]

R
BL

[1
]

R
BL

[0
]

R
BL

[1
]

R
BL

[2
]

R
BL

[3
]

V r
ef

 [3
:0

]

V r
ef

 [5
:4

]

V r
ef

 [6
]

V r
ef

 [7
]

V r
ef

 [8
]

V r
ef

 [1
0:

9]

V r
ef

 [1
4:

11
]

(c)

SA YOUT
CSH_ADC

Logic 7

EVALɸ2ɸ1
SA_EN

SAOP

SAON
VnAVG

VpAVG

PCHR EQP EQN

(d)

Fig. 2.18 (continued)

36 C. Yu et al.

2.4 PIM Design Challenges

While the analog PIM macros present outstanding efficiency numbers, serious
design challenges exist. Most well-known issues are process, temperature, and
voltage (PVT) variation induced computation nonlinearity and DAC/ADC overhead.

Figure 2.19a depicts input offset error of analog circuits in PIM macro (i.e.,
bitcell, SA, and ADC) caused by process variation. Figure 2.19a, left, illustrates the
error distribution of the output ADC code for identical MAC operations. Although
the memory bitcells in the PIM array have a regular structure, the difference in
MAC results exists due to process variation in the fabrication of memory bitcells.
The variation of one single bitcells and a whole column are shown in Fig. 2.19a
right. Figure 2.19a top right describes the distribution of discharge current when
one bitcell processes multiplicate operation using current discharge, and Fig. 2.19a
bottom right shows the bitline (BL) voltage allocation after completing the dot-
product operation in one column-based neuron. Overall, the process variation
fluctuates the bitline voltage representing the dot-product result and increases the
possibility of producing incorrect output ADC code. In terms of neural networks,
the generated output code becomes the new input activation for the next layer and
used to calculate another dot-product. Thus, the wrong output code of one layer
propagates through several computations and generates classification error at the
end, reducing the application task’s accuracy.

The computation nonlinearity happens when more rows are activated in parallel
to improve the computation efficiency, as shown in Fig. 2.19b. The bitline voltage
representing dot-product results decrease when more “1”s in the column are
added and cause a dynamic range limit. The accumulation linearity is significantly
degraded if the bitline voltage drops too low, as shown by the red dot line of Fig.
2.19b right.

The overhead of digital-to-analog and analog-to-digital converter (DAC/ADC)
for data transmission is also a significant concern for PIM macro. As shown in Fig.
2.19c, the DAC/ADC not only spends huge circuit area and energy consumption but
also increases the latency of the neural network accelerator. In addition, the typical
ADC has the fixed bit-precision, resulting in limitation about reconfigurability.

On the other hand, digital PIM macros suffer from different critical issues: low
area efficiency and high-power consumption. Figure 2.20a describes the modern
neural network accelerator containing a complete digital process elements (PEs)
array that processes massive MAC operation synchronously [41]. With the help of
hierarchical memory and data reuse strategy, this work improves computation effi-
ciency while also saving energy since memory access energy exceeds energy from
MAC operations. Figure 2.20b illustrates one PIM column with the parallel adder
tree, which performs massively parallel accumulation operation without additional
registers to store input activations and partial sums [40]. Note that the bit-serial
multiplication also improves energy efficiency in the tradeoff of operation latency.
In addition, the entire digital approach avoids the compute nonlinearity and poor
scaling of analog circuits. However, the full digital PE comprises more arithmetic
circuits, which not only occupies large area but also costs larger static/dynamic
energy compared to the bitcell of analog PIM.

2 Backgrounds 37

Dot-Product Results

n
muloC

edoCtuptu
O

CDA

Co
un

t

Idischarge

Co
un

t

VBL(or BLb)

(a)

Multiplication Results

B
L

(o
r B

LB
) V

ol
ta

ge

Linear

Nonlinear

1
1
1

1
1

1
1

1
1

0
1
1

1
1

1
1

1
1

0
0
1

1
1

1
1

1
1

0
0
0

0
0

1

0
0

0
0
0

0
0
0

0
0

0
0
0

0
0

0
0

0
0

11 1110

0
0noitavitc

AlellaraP

Multiplication Results

Ideal

(b)

Analog-to-Digital Converter (ADC)

latigiD
-t

o-
golanA
)CAD(retrevnoC

Analog
Domain

Bitcell

Pulses

Bitcell

Bitcell

Bitcell

Bitcell

Bitcell Bitcell

Bitcell

Bitcell

1 2 n

Column MUX. (n-to-1)

(c)

Fig. 2.19 Challenges of analog PIM macro: (a) process variation; (b) nonlinearity; (c) ADC
overhead

38 C. Yu et al.

DRAM
(off chip)

Memory
global
buffers

PE PE PEPE

PEPEPEPE

PEPEPEPE

PEPEPEPE

Ve
ct

or
 M

AC
Memory

input
buffer

Memory
weight
buffer

+
Memory

accumula�on
buffer

~100 MB
~40-100 pJ/byte

~1-100 KB
~1-10 pJ/byte

Typical PE buffer size: 32B -1KB, ~0.33-1 pJ/byte
(a)

W

W

W

W

Input 1

Input 2

Input 3

Input 4

(Digital mul�ply)

Digital Par�al Sum

Shi�
/add

Digital
Accumula�on

(b)

Fig. 2.20 (a) Simplified block diagram of a typical digital DNN accelerator; (b) A column-based
dot-product circuit using digital PIM [40]

2 Backgrounds 39

References

1. S. Yu, P.-Y. Chen, Emerging memory technologies: Recent trends and prospects. IEEE Solid-
State Circuits Magaz. 8(2), 43–56 (2016)

2. K. Zhang, F1: Embedded memory design for nano-scale VLSI systems, in 2008 IEEE
international solid-state circuits conference—Digest of technical papers (2008), pp. 650–651

3. N. Shibata et al., 1-V 100-MHz embedded SRAM techniques for battery-operated MTC-
MOS/SIMOX ASICs. IEEE J. Solid State Circuits 35(10), 1396–1407 (2000)

4. K. Agawa et al., A bitline leakage compensation scheme for low-voltage SRAMs. IEEE J.
Solid State Circuits 36(5), 726–734 (2001)

5. K. Nii et al., A 90-nm low-power 32-kB embedded SRAM with gate leakage suppression
circuit for mobile applications. IEEE J. Solid State Circuits 39(4), 684–693 (2004)

6. T.-H. Kim et al., A 0.2V, 480kb subthreshold SRAM with 1k cells per bitline for ultra-low
voltage computing. IEEE J. Solid State Circuits 43(2), 518–529 (2008)

7. T.-H. Kim et al., A voltage scalable 0.26V, 64kb 8T SRAM with Vmin lowering techniques
and deep sleep mode. IEEE J. Solid State Circuits 44(6), 1785–1795 (2009)

8. T. Kim et al., Design of a temperature-aware low voltage SRAM with self-adjustable sensing
margin enhancement for high temperature applications up to 300◦C. IEEE J. Solid State
Circuits 49(11), 2534–2546 (2014)

9. B. Wang et al., Design of an ultra-low voltage 9T SRAM with equalized bitline leakage and
CAM-assisted energy efficiency improvement. IEEE Trans. Circuits Syst. TCAS-I Regul. Pap.
62(2), 441–448 (2015)

10. A. Do et al., 0.2 V 8T SRAM with PVT-aware bit-line sensing and column-based data
randomization. IEEE J. Solid State Circuits 51(6), 1487–1498 (2016)

11. C. Duan et al., Energy-efficient reconfigurable SRAM: Reducing read power through data
statistics. IEEE J. Solid State Circuits 52(10), 2703–2711 (2017)

12. T. Kirihata et al., An 800 MHz embedded DRAM with a concurrent refresh mode, in IEEE int.
solid-state circuits conference (ISSCC), (IEEE, Piscataway, 2004), pp. 206–523

13. M. Kumar et al., A simple and high-performance 130 nm SOI EDRAM technology
using floating-body pass-gate transistor in trench-capacitor cell for system-on-a-chip (SoC)
applications, in IEEE int. electron devices meeting (IEDM), (IEEE, Piscataway, 2003), pp.
17.4.1–17.4.4

14. S. Yamamichi et al., A stacked capacitor technology with ECR plasma MOCVD
(Ba,Sr)TiO/sub 3/and RuO/sub 2//Ru/TiN/TiSi/sub x/ storage nodes for Gb-scale DRAMs.
IEEE Trans. Electron Devices 44(7), 1076–1083 (1997)

15. S. Yamamichi et al., An ECR MOCVD (Ba,Sr)TiO/sub 3/based stacked capacitor technology
with RuO/sub 2//Ru/TiN/TiSi/sub x/storage nodes for Gbit-scale DRAMs, in IEEE int. electron
devices meeting (IEDM), (IEEE, Piscataway, 1995), pp. 119–122

16. G. Aichmayr et al., Carbon/high-k trench capacitor for the 40nm DRAM generation, in IEEE
symp. on VLSI technology, (IEEE, Piscataway, 2007), pp. 186–187

17. T.S. Boscke et al., Tetragonal phase stabilization by doping as an enabler of thermally stable
HfO2 based MIM and MIS capacitors for sub 50nm deep trench DRAM. Int. Electron Devices
Meet. 2006, 1–4 (2006)

18. H.-S.P. Wong et al., Metal-oxide RRAM. Proc. IEEE 100(6), 1951–1970 (2012)
19. M.-F. Chang et al., Low VDDmin swing-sample-and-couple sense amplifier and energy-

efficient self-boost-write-termination scheme for embedded ReRAM macros against resistance
and switch-time variations. IEEE J. Solid State Circuits 50(11), 2786–2795 (2015)

20. S. Zuloaga et al., Scaling 2-layer RRAM cross-point array towards 10 nm node: A device-
circuit co-design, in IEEE int. symp. on circuits and systems (ISCAS), (2015), pp. 193–196

21. A. Bricalli et al., SiOx-based resistive switching memory (RRAM) for crossbar storage/select
elements with high on/off ratio, in IEEE int. electron devices meeting (IEDM), (2016), pp.
4.3.1–4.3.4

40 C. Yu et al.

22. Y. Chen et al., Reconfigurable 2T2R ReRAM architecture for versatile data storage and
computing in-memory. IEEE Trans. VLSI Syst. 28(12), 2636–2649 (2020)

23. H.Y. Lee et al., Low power and high speed bipolar switching with a thin reactive Ti buffer
layer in robust HfO2 based RRAM, in IEEE int. electron devices meeting (IEDM), (IEEE,
Piscataway, 2008), pp. 1–4

24. C. Zambelli et al., Electrical characterization of read window in ReRAM arrays under different
SET/RESET cycling conditions, in IEEE 6th int. memory workshop, (IEEE, Piscataway, 2014),
pp. 1–4

25. E. Vianello et al., Resistive memories for ultra-low-power embedded computing design, in
IEEE int. electron devices meeting (IEDM), (IEEE, Piscataway, 2014), pp. 6.3.1–6.3.4

26. A. Fantini et al., Intrinsic program instability in HfO2 RRAM and consequences on program
algorithms, in IEEE int. electron devices meeting (IEDM), (IEEE, Piscataway, 2015), pp. 7.5.1–
7.5.4

27. Z.-Q. Wang et al., Cycling-induced degradation of metal-oxide resistive switching memory
(RRAM), in IEEE int. electron devices meeting (IEMD), (IEEE, Piscataway, 2015), pp. 7.6.1–
7.6.4

28. H.B. Lv et al., BEOL based RRAM with one extra-mask for low cost, highly reliable embedded
application in 28nm node and beyond, in IEEE int. electron devices meeting (IEMD), (IEEE,
Piscataway, 2017), pp. 2.4.1–2.4.4

29. P.-Y. Chen et al., Design tradeoffs of vertical RRAM-based 3-D cross-point array. IEEE Trans.
Very Large-Scale Integr. Syst. 24(12), 3460–3467 (2016)

30. P.-Y. Chen, Compact modeling of RRAM devices and its applications in 1T1R and 1S1R array
design. IEEE Trans. Electron Devices 62(12), 4022–4028 (2015)

31. L. Lu et al., ReRAM device and circuit co-design challenges in nano-scale CMOS technology,
in 16th IEEE Asia Pacific conference on circuits and systems, (IEEE, Piscataway, 2020), pp.
213–216

32. Y. Youn et al., Investigation on the worst read scenario of a ReRAM crossbar array. IEEE
Trans. Very Large Scale Integr. Syst. 25(9), 2402–2410 (2017)

33. H. Lim et al., ReRAM crossbar array: Reduction of access time by reducing the parasitic
capacitance of the selector device. IEEE Trans. Electron Devices 63(2), 873–876 (2016)

34. P. Ma et al., High-performance InGaZnO-based ReRAMs. IEEE Trans. Electron Devices 66(6),
2600–2605 (2019)

35. B. Razavi, The StrongARM latch [a circuit for all seasons]. IEEE Solid-State Circuits Magaz.
7(2), 12–17 (2015)

36. M.E. Sinangil et al., A 7-nm compute-in-memory SRAM macro supporting multi-bit input,
weight and output and achieving 351 TOPS/W and 372.4 GOPS. IEEE J. Solid State Circuits
56(1), 188–198 (2021)

37. C. Yu, T. Yoo, T. Kim, K. Chai, B. Kim, A 16K current-based 8T SRAM compute-in-memory
macro with decoupled read/write and 1-5bit column ADC, in IEEE custom integrated circuits
conference (CICC), (IEEE, Piscataway, 2020), pp. 1–4

38. C. Yu, K. Chai, T. Kim, B. Kim, A zero-skipping reconfigurable SRAM in-memory computing
macro with binary-searching ADC, in IEEE 47th European solid-state circuits conference
(ESSCIRC), (IEEE, Piscataway, 2021), pp. 1–4

39. A. Biswas, A.P. Chandrakasan, CONV-SRAM: An energy-efficient SRAM with in-memory
dot-product computation for low-power convolutional neural networks. IEEE J. Solid State
Circuits 54(1), 217–230 (2019)

40. Y.-D. Chih et al., 16.4 an 89TOPS/W and 16.3TOPS/mm2 all-digital SRAM-based full-
precision compute-in memory macro in 22nm for machine-learning edge applications, in 2021
IEEE international solid-state circuits conference (ISSCC), (IEEE, Piscataway, 2021), pp. 252–
254

41. B. Zimmer et al., A 0.32–128 TOPS, scalable multi-chip-module based deep neural network
inference accelerator with ground-referenced signaling in 16 nm. IEEE J. Solid State Circuits
55(4), 920–932 (2020)

Chapter 3
SRAM-Based Processing-in-Memory
(PIM)

Hyunjoon Kim, Chengshuo Yu, and Bongjin Kim

3.1 Introduction

SRAM-based PIM gained popularity from its implementation simplicity using
active device-only and compatibility with the standard CMOS logic process. Unlike
the DRAM macro that is typically placed off-chip, SRAM macro is implemented on-
chip to serve as cache memory. Neural Cache [1] and CSRAM [2] took advantage of
the conventional SRAM implementation and re-purposed the macro to run compute
operations as well as the normal memory storing operation without significant
changes in the hardware.

Despite the advantages, SRAM-based PIM using the yield-optimized 6T bitcell
provided by the foundry often produces design concerns regarding the data integrity
during write/read operations, voltage scaling issues, and precision limitation during
the compute operation from its binary storage data. Large capacitive load on the
shared bitline in the SRAM array is the source of write/read disturbances, while also
limiting the bitline dynamic range. Common approaches to resolve the disturb issues
are implementing a hierarchical bitline structure to isolate read and write operations
by adding more transistors or providing a custom-designed bitcell. Scalability issue
is a common drawback presented in many analog systems. A mixed-signal PIM
macro utilizes a set of highly optimized control voltages that are sensitive to
process/temperature variation, hence tuning them for scalability would significantly
affect the operability of the macro. Finally, the precision limitation is from an
inherent design of the SRAM bitcell storing a binary bit.

H. Kim · C. Yu
Nanyang Technological University, Singapore, Singapore
e-mail: KIMH0003@e.ntu.edu.sg; e190026@e.ntu.edu.sg

B. Kim (�)
University of California Santa Barbara (UCSB), Santa Barbara, CA, USA
e-mail: bongjin@ucsb.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J.-Y. Kim et al. (eds.), Processing-in-Memory for AI,
https://doi.org/10.1007/978-3-030-98781-7_3

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98781-7_3&domain=pdf
mailto:KIMH0003@e.ntu.edu.sg
mailto:e190026@e.ntu.edu.sg
mailto:bongjin@ucsb.edu
https://doi.org/10.1007/978-3-030-98781-7_3

42 H. Kim et al.

Recent state-of-the-art SRAM-based PIM architectures attempt to address these
issues through different bitcell designs [1–12], new architecture [10–24], improved
data flow, and optimized compute operation schemes adopted from other computer
architectures [12, 22, 25–27]. Many SRAM-based PIM macros exploit bitline oper-
ation that relies on computation in analog domain. In general, SRAM-based PIM
macro utilizes one of the following three analog computing methods: bitline current
discharge accumulation/averaging, charge-domain accumulation, and voltage-based
accumulation. Process variation-induced nonlinearity is a common major concern
for any of the three design types, and digital domain-computed SRAM-based PIM
works attempt to address the particular issue [22, 25].

This chapter introduces the fundamentals in the implementation of SRAM-based
PIM macros. Then, various types of SRAM-based PIM cells with their macro
circuits and architecture will be described. Finally, the macro implementations with
evaluation results are discussed in the following section.

3.2 SRAM-Based PIM Cell Designs

3.2.1 Standard 6T SRAM-Based PIM

A standard 6T SRAM cell, a conventional embedded cache memory cell for storing
single-bit data, can process a binary MAC operation in memory. For implementing
a MAC operation in the SRAM cell, a binary input is applied to a WL, and a binary
weight is stored in the internal storage nodes of the SRAM cell, Q and Qb, as shown
in Fig. 3.1a. A DC low signal is applied to the WL to represent a zero input, and
a short positive pulse is applied to the WL to represent +1. Note that a pulse is
required (instead of a DC high) to accumulate element-wise multiplication results
from the SRAM cells sharing the same bitlines. If an SRAM storage node Q stores
a “high” (or a “low”), the stored weight is +1 (or −1). As soon as the input (either
a DC low or a short positive pulse) is applied to the WL, a binary multiplication
in SRAM cell is performed right away based on the input and the stored weight
values, and it contributes to the accumulation result (i.e., a voltage difference in BL
and BLb). For instance, if the input is 0, the SRAM cell is disabled due to the DC
low signal in the WL, and hence, the bitline voltages do not change, as shown in
Fig. 3.1b. If the input is +1 or −1, one of the bitlines (BL or BLb) will discharge its
capacitance by developing a discharging path between the bitline and the ground, as
shown in Fig. 3.1c, d. As a result, the bitline voltage will drop, and the magnitude
of the voltage drop is proportional to the pulse width of the input signal. Both BL
and BLb are initially precharged to a high voltage level (VDD in Fig. 3.1), and the
magnitude of the voltage drop due to a single SRAM cell is ΔV (i.e., a unit voltage
drop per SRAM cell).

The element-wise binary multiplication results (i.e., a bitline voltage drop as
much as ΔV for +1 and −1 multiplication results) from each bitcells in the

3 SRAM-Based Processing-in-Memory (PIM) 43

Q Qb

BLbBL

BL/BLb are pre-charged to VDD
WL

(Input)

(A binary weight stored in Q/Qb nodes)

Q Qb

VDDVDD

BL/BLb are pre-charged to VDD
Low

OFF OFF

(a) (b)

High Low

VDD-∆VVDD

BL/BLb are pre-charged to VDD

ON ON

ON

Low High

VDDVDD-∆V

BL/BLb are pre-charged to VDD

ON ON

ON OFF

(c) (d)

Fig. 3.1 A standard 6T SRAM cell as a PIM cell: (a) SRAM cell schematic with input and output
for PIM operation; Binary MAC operations when (b) the input is zero; (c) the input is +1, and the
weight is +1; (d) the input is +1, and the weight is −1

same column are accumulated and results in an aggregated voltage drop in both
bitlines. Figure 3.2, left, illustrates a column of 6T SRAM cells that accumulates
element-wise bitline voltage drops when the number of SRAM cells having the
multiplication results of +1 (or −1) is P (or N). Based on P and N values, we
can estimate the column accumulation result as a bitline voltage difference, V(BL)
− V(BLb) = (P − N)•ΔV. Figure 3.2, right, plots the BL (or BLb) voltage as a
function of P (or N). Note that a dynamic range is set to ensure a linear accumulate
operation and no disturbance issue (i.e., a false SRAM write operation due to a wide
bitline dynamic range).

3.2.2 Custom SRAM Cells for PIM

The standard 6T SRAM cell uses bitlines for write and read (or compute for PIM)
operations. As a result, there is a disturbance issue that could overwrite SRAM cells
with unintended values. Recently, custom SRAM cells with extra transistors have
been developed and used for processing MAC operations to prevent the SRAM cell
read disturbance issue by decoupling the SRAM write and read ports.

An 8-transistor (8T) foundry SRAM cell with a decoupled read port was used
as a PIM unit cell [5]. Two extra NMOS transistors and two additional read ports
have been added to decouple the read operation, as shown in Fig. 3.3. The two

44 H. Kim et al.

VDD-P∙ΔV VDD-N∙ΔV

6T SRAM

6T SRAM

6T SRAM

6T SRAM

6T SRAM

CBL CBL

N (or P)*
*# of -1 (or +1) multiplication results is N (or P)

B
L

(o
r B

LB
) V

ol
ta

ge

BL BLb

0 # Cells

Dynamic
Range

Accumulation Result
:V(BL)-V(BLb) = (P-N)∙ΔV

Pre-charged voltage-level

Fig. 3.2 Accumulation in a column of standard 6T SRAM cells

B
L

WL

Q Qb

B
Lb

RWL (Input)

R
BL

(A
cc

um
ul

at
e

N
od

e)

Fig. 3.3 A foundry 8T SRAM cell with a decoupled read port as a PIM unit cell [5]

NMOS transistors are connected in series, and they are used to create a read bitline
(RBL) discharging path to the ground. When both an internal SRAM node (Qb) and
a read wordline (RWL) input is high, the RBL discharging path is enabled. While
the foundry 8T SRAM cell prevents the SRAM read disturbance issue, there are
drawbacks, including a single-ended read operation and a larger bitcell area than
the 6T standard cell.

A custom 8T SRAM cell has been developed [6] to improve the read operation
through differential accumulation nodes. As illustrated in Fig. 3.4, two extra NMOS
transistors are added to realize a differential read bitline (RBL and RBLb). Instead of
connecting the NMOS transistors to the ground, an input node, RWL, is connected
to the source nodes of both the read NMOS transistors. Therefore, a discharging
path is created when the RWL is low and the internal circuit node (Q or Qb) is high.

The dynamic range of the bitline discharge is improved from the standard 6T
design while the size of the bitcell is increased. Aside from the area increase, short
pulse-width control for the RWL is an issue, while the data integrity concern is
resolved by the separate read/write ports. The SRAM supply is lowered improving
the linearity and reducing the energy consumption, while the precharge voltage for

3 SRAM-Based Processing-in-Memory (PIM) 45

B
L

WL

Q Qb

B
Lb

RWL (Input)

R
BL

b
(N

eg
at

iv
e

Ac
c.

 N
od

e)

R
BL

)edo
N.cc

A
evitisoP(

Fig. 3.4 A custom 8T SRAM PIM cell with differential decoupled read ports [6]

BL

WL

Q Qb

BL
b

RWL

LB
LF

LB
LT

Fig. 3.5 A custom 10T SRAM PIM cell with hierarchical bitlines (LBLT, LBLF) [10]

RWL and RBL/RBLb is set to a higher voltage to guarantee the operation linearity
and to resolve leakage concerns.

A custom 10T SRAM cell shown in Fig. 3.5 provides similar improvements to the
custom 8T SRAM in terms of the read operation with the differential read and de-
coupling read/write ports, however, uses an extra NMOS to load the multiplication
result only to the LBLT and LBLF instead of functioning as the accumulation node.
10T implementation further improves the dynamic range of the bitline and also
resolves the data integrity issue while sacrificing the bitcell area.

A custom dual 7T SRAM was developed from the custom 8T design to enable
reconfigurable weight with 3–15 precision levels in the analog PIM macro, while
also de-coupling the write/read operations as shown in Fig. 3.6. The dual 7T
can store ternary (3-level) weight values that can form multiple SRAM stacks to
represent up to 15-level weight values (3× 7T SRAMs). Also, zero-skipping is
implemented for both zero-weight and zero-input for further energy reduction.

In summary, the dual 7T SRAM kept its strengths such as differential read
scheme and the improved bitline dynamic range (vs. 6T) with the added features
of precision reconfigurability and zero-input/weight skipping, while sacrificing the
bitcell area.

The SRAM-based PIM with bitline discharging operations suffers from a limited
dynamic range. As the bitline dynamic range increases, the accumulation linearity

46 H. Kim et al.

BL
L

WL

QbL

BL
b L

RWL

R
B

L L

BL
R

QbR

BL
b R

R
B

L R

Fig. 3.6 A dual 7T SRAM PIM cell with separate read bitlines (RBLL, RBLR) [11]

Fig. 3.7 The nonlinear
accumulation of the
bitline-discharging-based
PIM

Multiplication Results

egatloV)BLB ro (
L

B

Linear

Nonlinear

B
L

WL

Q Qb

B
Lb

RWL_P

RWLB_P

RWL_N

RWLB_N

R
BL B
L

WL

Q Qb

B
Lb

XNOR YbY

RBL

RBLb

(a) (b)

Fig. 3.8 Custom SRAM-based PIM cells for voltage-mode accumulation: (a) single-ended [7]
and (b) differential accumulation [8]

is significantly degraded, as shown in Fig. 3.7. The voltage-mode accumulation has
been introduced to improve the dynamic range in the accumulation nodes [7, 8]. A
single-ended voltage-mode accumulation is performed using two CMOS inverters,
four RWLs, and a single RBL [7], as shown in Fig. 3.8a. The dynamic range was
further improved with a differential voltage-mode accumulation, implemented using
two CMOS inverters and two RBLs [8], as shown in Fig. 3.8b. While the voltage-
mode PIM macros offer a wide dynamic range and improved linearity, the increased
cell size and the residual analog nonidealities are the remaining challenges.

3 SRAM-Based Processing-in-Memory (PIM) 47

Fig. 3.9 Custom
SRAM-based PIM cells for
charge-domain accumulation:
(a) charge-sharing-based; (b)
charge-redistribution-based
(or capacitive-coupling-
based)

WL

Qb Q

B
Lb

RWLB

R
BL

Acc

RWL

(a)
WL

Qb Q

B
Lb

RWLB

R
BL

RWL

(b)

Charge-domain SRAM-based PIM cells [9, 25] have been developed to minimize
the residual analog nonidealities. Instead of using pull-down NMOS transistors (for
bitline discharging) or CMOS (pull-up or pull-down) drivers (for voltage mode
accumulation), the charge-domain SRAM-based PIM cells use passive capacitors
for sharing or redistributing charges. Figure 3.9a shows a PIM cell for charge-
sharing-based accumulation. The cell requires two read wordlines (RWL and
RWLb), a read bitline (RBL), a unit capacitor, and three switches. Figure 3.9b shows
a charge-domain PIM cell with a charge-redistribution-based accumulation using
two read wordlines (RWL and RWLb), a read bitline (RBL), two switches, and a
unit capacitor.

Despite the recent efforts, there are more challenges in the design of analog
and mixed-signal SRAM-based PIM macros, such as data conversion overhead
(i.e., DAC for input conversion and ADC for output conversion), limited recon-
figurability, and the residual analog nonidealities (device mismatch, variation, and
nonlinearity). To overcome such limitations, digital SRAM-based PIM cells are
developed [22, 25]. Instead of using analog MAC circuits, the digital PIM cells
use all-digital MAC circuits using an XNOR (or AND) gate and a full-adder.

Hence, the digital PIM is free from analog nonidealities and data conversion
overhead challenges. Figure 3.10a shows a digital PIM cell composed of a standard

48 H. Kim et al.

Fig. 3.10 Digital
SRAM-based PIM cells: (a) a
fixed weight precision PIM
cell [25]; (b) a reconfigurable
weight precision PIM cell
[22]

B
L

WL

Q Qb

B
Lb

RWL (INb)

O
U

T

(a)

B
L

WL

Q Qb

B
Lb

XNOR
Y

Si
gn

-In

C
ar

ry
-In

2:1 2:1

Full Adder
A B

Ci S
Co

Carry-Out

Si
gn

-O
ut

Psum-In Psum-Out

(b)

6T SRAM cell and a NOR gate working as an AND gate for a bitwise multiplier.
The accumulation is performed in a digital adder tree at the macro-level. Figure
3.10b shows a reconfigurable digital PIM cell that embeds a bitwise XNOR-gate
multiplier and a full-adder for accumulation. Note that a digital PIM macro based
on the reconfigurable PIM cell can be reconfigured to operate with a 1–16b variable
weight precision. A bit-serial computing scheme is applied for inputs for both digital
PIM cells, saving a significant area for conventional bit-parallel computing. The
bit-serial computing is also intrinsically reconfigurable as the number of bit-serial
operation cycles determines the serialized input bit precision.

3.3 SRAM-Based PIM Macro Designs

Figure 3.11 shows four columns of foundry 8T SRAM cells for processing a dot-
product computation between 4b inputs and 4b weights stored in the SRAM cells. A
4b weight is stored bit-by-bit into four SRAM cells in the same row. A 4b serialized
input is applied to a horizontal RWL as multiple positive short pulses. The multiple

3 SRAM-Based Processing-in-Memory (PIM) 49

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

RWL[63]

RWL[62]

RWL[61]

RWL[2]

RWL[1]

RWL[0]

RBL[3] RBL[2] RBL[1] RBL[0]

Compensation Caps for Charge-Sharing

OUT (Accumulated Voltage)

Fig. 3.11 Four columns of foundry 8T SRAM cells for a dot-product PIM operation between 4b
inputs and 4b weights [5]

pulse scheme can guarantee better linearity than the pulse-width modulation (PWM)
scheme. Each column first accumulates element-wise multiplication results based
on the bitline discharging method. Then all four column accumulation results are
combined by charge-sharing across the bitlines from the four columns.

The detailed bitline-discharging and charge-sharing operations using four
SRAM-based PIM columns are illustrated in Fig. 3.12. It consists of four-step
operations: (1) RBL precharging; (2) RBL discharging (column accumulations);
(3) charge-sharing; (4) analog-to-digital conversion of the combined accumulation
results. RBL [3:0] is the first precharged to a high level (step 1) and then is
discharged based on the multiplication results between a series of multiple input
pulses (RWL [63:0]) and the weights stored in each column (step 2). After the
column-by-column accumulation based on RBL discharging, charge-sharing (step
3) combines the accumulated results. Finally, the combined analog voltage is
converted to a digital output code (step 4).

Figure 3.13 shows PIM macro architecture using the foundry 8T SRAM with
column-wise multiply-and-average (MAV) scheme using 64× 4b inputs and 16×
4b weights in a single cycle to produce 16× 4b outputs. Each four RBLs (i.e., 4×
SRAMs in the same row to realize 4b weight) share one 4b flash ADC, while the
RWL counters produce pulse control signals to realize input precision of 4b. RWL

50 H. Kim et al.

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

RWL[2]

RWL[1]

RWL[0]

RBL[3] RBL[2] RBL[1] RBL[0]

1Cu

8Cu

5Cu

4Cu

7Cu

2Cu

8Cu

1Cu
A B C D

ADC

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

RWL[2]

RWL[1]

RWL[0]

RBL[3] RBL[2] RBL[1] RBL[0]

1Cu

8Cu

5Cu

4Cu

7Cu

2Cu

8Cu

1Cu
A B C D

ADC

Step 1: RBL pre-charging Step 2: RBL discharging

1Cu 5Cu 7Cu 8Cu

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

RWL[2]

RWL[1]

RWL[0]

RBL[3] RBL[2] RBL[1] RBL[0]

8Cu 4Cu 2Cu 1Cu
A B C D

ADC

1Cu 5Cu 7Cu 8Cu

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

6T
SRAM

RWL[2]

RWL[1]

RWL[0]

RBL[3] RBL[2] RBL[1] RBL[0]

8Cu 4Cu 2Cu 1Cu
A B C D

ADC

Step 3: Charge-sharing Step 4: Analog-to-digital conversion

A
B
C
D

Step 1 Step 2 Step 3 Step 4

Transient voltages at nodes A, B, C, and D

Fig. 3.12 Four-step operations for bitline-discharging and charge-sharing operations to combine
accumulation results from four columns [5]. Step 1 RBL precharging. Step 2: RBL discharging.
Step 3: Charge-sharing. Step 4: Analog-to-digital conversion. Transient voltages at nodes A, B, C,
and D

voltage is sampled through the compensation cap, then the averaging is processed
by charge sharing from the binary-weighted computation caps (included in the
flash ADC), while the inherent capacitance of the sense amplifier inside 4b flash
ADCs used to represent the unit capacitance that effectively produces MAV results
(averaged voltage) at the output. The architecture achieves high energy efficiency
using advanced technology and novel computation blocks; however, the design
could not completely resolve the limited dynamic range of the bitline as well as
the process variation induced nonlinearity.

Figure 3.14 illustrates a column-based circuit for processing a dot-product using
custom 8T SRAM PIM cells (Fig. 3.6) [6] with differential read ports for bitline-
discharging-based accumulation. A column consists of a precharge PMOS circuit,
128× SRAM PIM cells (64× for dot-product, 32× for ADC, and 32× for offset
calibration) and a sense amplifier (SA) for a single-slope column ADC operation.

3 SRAM-Based Processing-in-Memory (PIM) 51

Fig. 3.13 A PIM macro
architecture of a 64 × 64
foundry 8T SRAM cell array
with 64× 4b inputs and 16×
4b outputs [5]

SRAM R/W Interface

R
W

L
Dr

iv
er

s

sretnuoC
L

WRtib4

Compensation Caps

4bit Flash ADCs

IN63[3:0]
IN62[3:0]
IN61[3:0]

IN2[3:0]
IN1[3:0]
IN0[3:0]

O
U

T1
5[

3:
0]

O
U

T1
4[

3:
0]

O
U

T0
[3

:0
]

stupnItib4
x46

16x 4bit Outputs
64

x4
 8

T
SR

A
M

 C
el

ls

64
x4

 8
T

SR
A

M
 C

el
ls

64
x4

 8
T

SR
A

M
 C

el
ls

Figure 3.14, right, plots transient waveforms for maximum and minimum RBL
voltages based on the number of cells discharging RBL or RBLb. The bitline
capacitances are discharged for a short RWL negative pulse width.

In this particular design, the custom 8T SRAM offered reduced ADC overhead
by using the replica bitcells, improved the bitline dynamic range compared to the
standard 6T SRAM and addressed variation-induced nonlinearity through offset
calibration blocks. On the other hand, the dynamic range improvement is not
significant, ADC overhead is not completely resolved, and the parallel MAC
utilization is reduced in half due to the bitcells that are assigned as column ADCs
and offset calibration blocks.

A PIM macro architecture using the custom 8T SRAM is shown in Fig. 3.15,
and its column MAC structure is illustrated in Fig. 3.14. 128× input rows are
divided into three functional blocks for inputs, ADC reference, and offset calibration
to perform column-wise MAC operation to output 128× 1b outputs. The custom
8T SRAM macro utilizes wordline pulse width modulation and reconfigurable
ADC precision through replica PIM cells to avoid larger ADC overhead while
sacrificing the input parallelism. Compared to the architecture in Fig. 3.13, the
custom 8T SRAM macro provides higher area efficiency from the non-flash ADC
implementation and higher number of input columns.

Single-ended voltage-mode SRAM PIM cells [7] are used for processing a dot-
product in a column-based memory array, as shown in Fig. 3.16. XNOR-based
multiplications are performed between the stored binary weights (in a 6T standard
SRAM cell embedded in each PIM cell) and the input read wordlines connected

52 H. Kim et al.

X[63]

X[0]

RBL

OUT (Thermometer Code)

RBLb

VDDPCH

PCHb

SA

8T SRAM PIM Cell

8T SRAM PIM CellR[31]

R[0] 8T SRAM PIM Cell

8T SRAM PIM CellC[31]

6T
SRAM

C[0] 8T SRAM PIM Cell
D

ot
-P

ro
du

ct
(6

4x
)

A
DC

 R
ef

.
(3

2x
)

O
ffs

et
 C

al
.

(3
2x

)

V(RWL)

]721:0[L
W

R

V(RBL) or V(RBLb)

0.8

0

0.8

0.7

0.6

0.5

[V]

[V] Max. V(RBL)

Min. V(RBL)

Fig. 3.14 A column-based dot-product circuit using custom 8T SRAM PIM cells with an
embedded single-slope column ADC based on replica bitcells [6]

Fig. 3.15 A PIM macro
architecture of a 128 × 128
custom 8T SRAM cell array
[6]

RBL Precharge

128x128
Custom 8T

SRAM Array

R
W

L
Dr

iv
er

s
(P

ul
se

 G
en

er
at

io
n)

Sense Amplifiers

X[63]

X[0]

O
U

T[
12

7]

64x
Inputs

128x 1bit Outputs

R[31]

R[0]
C[31]

C[0]

O
U

T[
12

6]
O

U
T[

12
5]

O
U

T[
2]

O
U

T[
1]

O
U

T[
0]
ADC
Ref.

Offset
Cal.

to the supplies and grounds of voltage-mode drivers. As a result, a shared RBL
is driven by parallel pull-up and pull-down transistors equivalent to a resistive
divider, as illustrated in Fig. 3.16, top-right. The measured transfer characteristic
of the single-ended voltage-mode accumulator is shown in Fig. 3.16, bottom-right.
Note that the RBL dynamic range is rail-to-rail, which has been significantly

3 SRAM-Based Processing-in-Memory (PIM) 53

RWL_P[255]

RWLB_P[255]

RWL_N[255]

RWLB_N[255]

6T SRAM

RWL_P[254]

RWLB_P[254]

RWL_N[254]

RWLB_N[254]

6T SRAM

RWL_P[0]

RWLB_P[0]

RWL_N[0]

RWLB_N[0]

6T SRAM

R
BL0

1

0

1

of PD = N

of PU = 256-N

V(RBL)

RU/(256-N)

RD/N

Single-ended Voltage-Mode Acc. Result
(Resistive Divider)

Dot-Product Result

0.6

R
BL

 V
ol

ta
ge

[V
]

RBL

0.5

0.4

0.3

0.2

0.1

0
-256 -128 0 128 256

Fig. 3.16 A column-based dot-product circuit using single-ended voltage-mode SRAM PIM cells
in Fig. 3.8a and the measured accumulated RBL voltage [7]

improved from that of the bitline-discharging-based current-mode accumulations
using standard 6T or foundry/custom 8T PIM cells [1, 2]. However, there are
residual analog nonidealities (nonlinearity and variation), as is shown in Fig. 3.16,
bottom-right.

The architecture of the single-ended voltage-mode SRAM PIM macro is pre-
sented in Fig. 3.17. 256× ternary input is processed through column-wise MAC.
XNOR-based multiplication of the PIM macro architecture utilizes voltage accu-
mulation which requires separate computing blocks that increase the size of the
bitcell. Also, the MAC results are selectively fed to the multi-bit flash ADC due to
area overhead to produce 10b thermometer code. While the voltage-mode operation
provides improved dynamic range in the RBL, the reduction in throughput due to
A2D conversion overhead, analog variation-induced nonlinearities and the nonlinear
accumulation caused by the CMOS pull-up/pull-down strength imbalance are major
concerns.

Differential voltage-mode SRAM PIM cells [8] are developed and used for
processing a dot-product, as shown in Fig. 3.18. Embedded XNOR gates are used
for multiplications between the stored binary weights in the standard 6T SRAM
cells and the inputs applied through SRAM bitlines. Note that the SRAM bitlines are
reused for the PIM operations to minimize the overhead due to the extra input signal
lines. After the element-wise multiplications, differential voltage-mode drivers (i.e.,
a pair of inverters) are used for voltage-mode accumulation. Each bitline (RBL
and RBLb) is pulled up and pulled down based on the number of +1 and −1

54 H. Kim et al.

Fig. 3.17 A PIM macro
architecture of a 256 × 64
single-ended voltage-mode
SRAM cell array with 256×
ternary inputs and a 10b
thermometer code output [7]

WBL Drivers

256x64
Single-Ended
Voltage-Mode

SRAM Cell ArrayR
W

L
Dr

iv
er

s

Column Decoder

3.46bit Flash ADC

IN255[1:0]
IN254[1:0]
IN253[1:0]

IN2[1:0]
IN1[1:0]
IN0[1:0]

Q
[9

]

stupnI
yranreT

x652

10b Therm. Code

Analog Mux (64:1)

Q
[8

]
Q

[7
]

Q
[2

]
Q

[1
]

Q
[0

]

multiplication results. Figure 3.18, bottom-left, shows the equivalent circuits rep-
resenting the pull-up and pull-down resistors that eventually determine the voltages
for RBL and RBLb. The Monte-Carlo simulation result of the pseudo-differential
RBL voltage (i.e., V(RBL)-V(RBLb)) is shown in Fig. 3.18, bottom-right. Note
that a dynamic range is doubled and the transfer characteristic is symmetric while
residual nonlinearities and variations are observed.

Differential voltage-mode SRAM PIM macro architecture is shown in Fig. 3.19.
Similar to the custom 8T SRAM PIM, 128× inputs are divided into the same three
functional parts in row-wise compute scheme. Although the operational difference
from the custom 8T SRAM PIM exists due to the voltage mode operation as opposed
to the bitline discharge, a similar performance trade-off of reduced parallelism exists
from the column bitcells that are assigned for row ADC and offset calibration. Also,
the low precision weight SRAMs limit the application mapping as well as the PVT
variation-induced nonlinearity causing output reliability issues.

Compared to the architecture described in Fig. 3.17, differential voltage-mode
SRAM PIM provides higher throughput due to the elimination of the output analog
MUX and minimized ADC overhead from the replica bitcells that realize parallel
row ADCs.

Passive capacitors have been used to implement charge-domain SRAM-based
PIM macros to minimize analog nonidealities in processing accumulations using
bitline-discharging or voltage-mode accumulation. Figure 3.20 shows a column
of custom SRAM PIM cells for charge-sharing-based accumulation. A PIM cell
consists of a standard 6T SRAM cell, a pair of switches, and two read wordline
inputs (RWL and RWLb) for an XNOR-based binary multiplication. A unit passive
capacitor and a switch are used for sharing charges across the bitcells in the same

3 SRAM-Based Processing-in-Memory (PIM) 55

Differential Voltage-Mode Acc. Result
(Resistive Divider)

Dot-Product Result

0.6

D
iff

er
en

tia
l R

B
L:

 V
(R

B
L)

-V
(R

B
Lb

) [
V]

0.5
0.4
0.3
0.2
0.1

0

-64 -32 0 32 64

YbY XNOR

6T SRAM

YbY XNOR

6T SRAM

YbY XNOR

6T SRAM

RBL

RBLb

X[0] Xb[0] X[1] Xb[1] X[63] Xb[63]

R
BL0

1

0

1

of PD = N

of PU = 64-N

Ru/(64-N)

Rd/N

V(RBL)

R
BL0

1

0

1

of PD = 64-N

of PU = N

Ru/N

Rd/(64-N)

V(RBLb)

-0.1
-0.2
-0.3
-0.4
-0.5
-0.6

Fig. 3.18 A column-based dot-product circuit using differential voltage-mode SRAM PIM cells
in Fig. 3.8b and the Monte-Carlo simulated differential RBL voltage [8]

Fig. 3.19 A PIM macro with
a 128 × 128 differential
voltage-mode SRAM PIM
cells [8]

BL Drivers

128x128
Fused 6T+XNOR

SRAM Array

redoceD
L

W

Se
ns

e
A

m
pl

ifi
er

s

X[
63

]

X[
0]

OUT[127]

64
x

In
pu

ts
R

[3
1]

R
[0

]
C

[3
1]

C
[0

]

OUT[126]
OUT[125]

OUT[2]
OUT[1]
OUT[0]

AD
C

Re
f.

O
ffs

et
Ca

l.

56 H. Kim et al.

1V

C

0V

C

0V

C

1V

C

N
cells

256-N
cells

V R
BL

 =
 N

/2
56

 [V
]

C

C

C

C

RWLb[255]

RWL[255]

Acc
6T

SRAM

Acc
6T

SRAM
RWLb[254]

RWL[254]

RWLb[1]

RWL[1]

Acc
6T

SRAM

Acc
6T

SRAM
RWLb[0]

RWL[0]

RBL

Fig. 3.20 A column-based dot-product circuit using SRAM-based PIM cells in Fig. 3.9a for
accumulation based on charge-sharing and the resulting RBL voltage

column. Figure 3.20, right, illustrates the charge-sharing-based accumulation before
and after turning on the accumulator switches all at once. When the number of +1
element-wise multiplication results is “N,” the resulting RBL voltage is N/256 V if
the supply voltage is 1 V.

Besides the bitline charge-sharing, a charge-redistribution (or capacitive cou-
pling) technique can be used for implementing a charge-domain SRAM-based PIM
macro. Figure 3.21 shows a column of SRAM-based PIM cells realizing charge-
redistribution-based accumulation. Each PIM cell consists of a standard 6T SRAM
cell, a pair of switches with two input read wordlines (RWL and RWLb), and a unit
capacitor.

Charge domain SRAM-based PIM macros offer the highest energy efficiency
and throughput performances among the other state-of-the-art mixed-signal SRAM-
based PIM works. A tradeoff for such performance for the work described in
Fig. 3.21, however, are the nonlinearity issue at the output caused by the shared
capacitive coupling of the ADC and the limited DNN applicability due to low
precision parameter storage of the macro.

Charge-redistribution-based SRAM PIM macro architecture is illustrated in
Fig. 3.22. 256× inputs are processed through column-wise MAC producing 64×
4b ADC outputs. The macro can implement binary neural networks (BNN) and
achieves high throughput by enabling all the RWL rows simultaneously instead of
using the conventional row-by-row or column-by-column access. An analog voltage
is formed at the read bitline through capacitive division, then fed to the ADC placed
at the output of each column, and produces fully parallel MAC results in a single
cycle.

3 SRAM-Based Processing-in-Memory (PIM) 57

RWLb[255]

RWL[255]

RWLb[254]

RWL[254]

RWLb[1]

RWL[1]

RWLb[0]

RWL[0]

6T SRAM

6T SRAM

6T SRAM

6T SRAM

R
BL

Equivalent Circuit
(Capacitive Divider)

N∙Cu

(256-N)∙Cu

VRBL=
N/256 [V]

1V

1V

1V

1V

RBL

Fig. 3.21 A column-based dot-product circuit using SRAM-based PIM cells in Fig. 3.9b for
accumulation based on charge-redistribution (or capacitive coupling)

Fig. 3.22 A PIM macro of
256 × 64
charge-redistribution-based
SRAM PIM cells [9]

RWLb[255]

RWL[255]

RWLb[254]

RWL[254]

RWLb[0]

RWL[0]

srevirD/sredoce
D

L
WR 6T SRAM

6T SRAM

6T SRAM

6T SRAM

6T SRAM

6T SRAM

6T SRAM

6T SRAM

6T SRAM

R/
W

 W
L

A
dd

re
ss

 D
ec

od
er

R/W BL Drivers

ADC

O
U

T0
[3

:0
]

VREF[0:9]

ADC

O
U

T1
[3

:0
]

ADC

O
U

T6
3[

3:
0]

RBL[0] RBL[1] RBL[63]

10T SRAM-based row-wise PIM structure is shown in Fig. 3.23a. Hierarchical
bitlines (LBLT/F and BL/B) provide robustness toward the write disturbance caused
by the large capacitive load during the current discharge. Multiply-and-average
results are applied to the Vp and Vn nodes then integrated through charge-sharing
ADC reference column as shown in Fig. 3.23b. Each 10T SRAM stores 1b filter
weights for Convolutional Neural Network (CNN) inference, while the integrated
MAV produces 7b ADC output, which is described in Fig. 3.24. The macro
architecture shows row-wise computing scheme producing 16× 7b parallel outputs
with 7b input DAC that utilizes pulse-width modulated wordline control. Despite

58 H. Kim et al.

10T
SRAM

PCH PCH

PC
H

EN
p

EN
p

EN
n

EN
n

LB
LF

0

LB
LT

0

RWL

10T
SRAM

Local
MAV

LB
LF

63

LB
LT

63

x16

10T
SRAM

PCHR PCHR
Vdd

EQ
p

EQ
n

BL
N

re
f

BL
P r

ef

Local MAV Charge-sharing
+

Integration

ADC Reference Col.

VpAVG

VnAVG

(a)

LBLT0LBLF0

0

Vin
VpAVG

VnAVG

DAC Mult. Avg.

(b)

Fig. 3.23 10T SRAM-based PIM architecture: (a) a row-wise charge sharing architecture; (b) its
multiply-and-average (MAV) operation diagram [10]

7b DAC

256x64
Custom 10T
SRAM Array 7b

 A
DC

X[
0]

X[
1]

OUT[0]

X[
2]

X[
63

]

OUT[1]
OUT[2]

OUT[13]
OUT[14]
OUT[15]

sredoceD
L

W

Pre-charge Drivers

X[
61

]
X[

62
]

Fig. 3.24 A PIM macro architecture of a 256 × 64 10T SRAM cell array with 64× 7b inputs and
16× 7b outputs [10]

3 SRAM-Based Processing-in-Memory (PIM) 59

W3 W2 W1 W0

4

IN[0]

W3 W2 W1 W0

4

IN[1]

W3 W2 W1 W0

4

IN[254]

W3 W2 W1 W0

4

IN[255]

5

5

11

11

12
OUT[11:0]Adder

Tree

Fig. 3.25 A digital SRAM PIM dot-product circuit using 256 × 4 PIM cells and an adder tree
[25]

the larger SRAM area, the area efficiency did not suffer due to the small size of
the CSH_ADC. However, hardware scalability, low precision weight operation and
analog variation issues remain as design challenges.

Analog PIM works [1–4, 13, 16] achieve outstanding energy efficiency and
energy efficiency. However, analog computing issues such as ADC/DAC overhead
and PVT variation-induced nonlinearities remain as major concerns. Digital PIM
architectures address both issues by directly processing the digital input bits without
the data conversion and utilizing the binary abstraction that reduces sensitivity to
any physical variation.

Figures 3.25 and 3.26 illustrate digital PIM macro [25] that utilize 256× 4b
weights per column, producing 64× 12b MAC output. Each PIM cell is composed
of fused 6T SRAM and a two-input NOR gate producing binary multiplication
result while the accumulate operation is processed separately in the dedicated
adder tree that uses 256× 4b multiply results as inputs to produce a single 12b
output. Although the weight bit precision is fixed to 4b, bit-width can be further
reconfigured to 8b, 12b, and 16b depending on the multiple macro scaling with area
trade-off.

Figures 3.27 and 3.28 present another digital PIM macro [22] with fully
reconfigurable inputs, weights, and outputs. Each PIM cell is composed of 6T
SRAM, an XNOR gate and a full-adder. The PIM cells can form 1–16b unit
column MAC by stacking together to achieve reconfigurable processing element
(PE). Despite the regular design of unit PIM cells in a multi-bit column MAC,
different function is assigned depending on its location within the unit column.

60 H. Kim et al.

srevir
DtupnI

dna
L

W

O
U

T0
[1

9:
0]

W3 W2 W1 W0

W3 W2 W1 W0

W3 W2 W1 W0

W3 W2 W1 W0

Ad
de

r T
re

e
BL Drivers and Accumulators

25
6x

4
D

ig
ita

l S
R

AM
 P

IM
 C

el
ls

Ad
de

r T
re

e

25
6x

4
D

ig
ita

l S
R

AM
 P

IM
 C

el
ls

Ad
de

r T
re

e

O
U

T1
[1

9:
0]

O
U

T6
3[

19
:0

]

IN[0]

IN[1]

IN[254]

IN[255]

Fig. 3.26 A PIM macro architecture of a 256 × 256 digital SRAM PIM cell array with adder trees
[25]

Fig. 3.27 A reconfigurable
digital SRAM PIM
dot-product circuit using
(N+7) × 128 PIM cells [22]

OUT[N+6]

WN-1

W1

WN-1

W1

WN-1

W1

WN-1

W1

IN
[1

27
]

IN
[1

26
]

IN
[1

]]0[
NI

OUT[N]

OUT[N-1]

OUT[1]

OUT[0]

W0 W0 W0 W0

For example, the PIM cell located at the top of the column represents LSB weight
and the gray cells shown in Fig. 3.26 are accumulation-only PIM cells. The gray
PIM cells produce sign-extended output as well as partial sum propagation through

3 SRAM-Based Processing-in-Memory (PIM) 61

redoce
D

sserddA
L

W

OUT[0]

BL and Input Drivers

IN
[0

]

IN
[1

]

6T

6T

6T

6T

6T

6T

6T 6T 6T

6T 6T 6T

6T

6T

6T

6T

IN
[1

26
]

IN
[1

27
]

OUT[1]

OUT[126]

OUT[127]

Po
st

 A
cc

um
ul

at
or

Fig. 3.28 A PIM macro of 128 × 128 reconfigurable digital SRAM PIM cells [22]

all the columns in the macro array. With 128× column, each unit column MAC
requires 7× accumulation-only PIM cells to propagate all the partial sums to the
output. Challenges associated with the digital SRAM PIM [22] is the hardware
redundancy caused by enabled/disabled memory and compute blocks from the
regular structure that processes reconfigurable MAC operation. As a result of the
redundant circuit blocks, unit PIM cell becomes large and the SRAM capacity in
the macro is degraded.

3.4 Summary

This chapter provides a review of recent state-of-the-art SRAM-based PIM macros.
SRAM-based PIMs are currently the most popular implementations due to their
manufacturing compatibility with the standard CMOS logic process. Unlike DRAM
or other emerging memory technologies, standard yield optimized SRAM bitcell
does not require a special manufacturing process. As a result, SRAM-based PIM
could explore diverse custom bitcell designs without a major concern in manufac-
turability. Most state-of-the-art SRAM-based PIM targets optimizing the high-level
architecture and data-flow rather than focusing on reliability and stability of the
physical implementation of the macro. Hence, SRAM-based PIM architectures
provide a primitive basis of the advanced architecture implementation for the more
process-sensitive DRAM-based PIM and ReRAM-based PIM macros in terms of
operation techniques and implementation.

62 H. Kim et al.

SRAM-based PIM macro can be categorized to two different types based on
its operation principles. Analog PIM macro provides high energy/area efficiency
performance while showing limitations in flexibility and reliability. Different SRAM
designs were proposed to address critical issues associated with the analog comput-
ing and memory operations. On the other hand, digital PIM macro demonstrates
less efficient numbers but excels in reconfigurability and robustness to variations.
Digital SRAM-based PIM works prioritize the standard 6T SRAM design, as the
most critical design challenge for a digital macro is reducing the hardware footprint
and energy consumption. The two design approaches supplement each other’s
weaknesses and a recent publication in PIM research introduced hybrid architecture
[12] that combines the strengths of the two types.

References

1. C. Eckert et al., Neural cache: Bit-serial in-cache acceleration of deep neural networks, in
ACM/IEEE 45th annual international symposium on computer architecture (ISCA), (ACM,
New York, 2018), pp. 383–396

2. J. Wang et al., 14.2 a compute SRAM with bit-serial integer/floating-point operations for
programmable in-memory vector acceleration, in 2019 IEEE international solid-state circuits
conference - (ISSCC), (IEEE, Piscataway, 2019), pp. 224–226

3. X. Si et al., 24.5 a twin-8T SRAM computation-in-memory macro for multiple-bit CNN-based
machine learning, in 2019 IEEE international solid-state circuits conference - (ISSCC), (IEEE,
Piscataway, 2019), pp. 396–398

4. Q. Dong, S. Jeloka, Y. Kim, M. Kawaminami, A. Harada, S. Miyoshi, M. Yasuda, D. Blaauw,
D. Sylvester, A 4 + 2T SRAM for searching and in-memory computing with 0.3-V VDDmin.
IEEE J. Solid State Circuits 53(4), 1006–1015 (2018)

5. Q. Dong, M.E. Sinangil, B. Erbagci, D. Sun, W. Khwa, H. Liao, Y. Wang, J. Chang, A
351TOPS/W and 372.4GOPS compute-in-memory SRAM macro in 7nm FinFET CMOS
for machine-learning applications, in IEEE int. solid-state circuits conf. (ISSCC), (IEEE,
Piscataway, 2020), pp. 242–244

6. C. Yu, T. Yoo, T. Kim, K. Chai, B. Kim, A 16K current-based 8T SRAM compute-in-memory
macro with decoupled read/write and 1- 5bit column ADC, in IEEE custom integrated circuits
conference (CICC), (IEEE, Piscataway, 2020), pp. 1–4

7. S. Yin, Z. Jiang, J.-S. Seo, M. Seok, XNOR-SRAM: In-memory computing SRAM macro for
binary/ternary deep neural networks. IEEE J. Solid State Circuits 55(6), 1733–1743 (2020)

8. H. Kim, Q. Chen, B. Kim, A 16K SRAM-based mixed-signal in-memory computing macro
featuring voltage-mode accumulator and row-by-row ADC, in IEEE Asian solid-state circuit
conference (ASSCC), (IEEE, Piscataway, 2019), pp. 35–36

9. Z. Jiang, S. Yin, J. Seo, M. Seok, C3SRAM: An in-memory-computing SRAM macro based
on robust capacitive coupling computing mechanism. IEEE J. Solid State Circuits 55(7), 1888–
1897 (2020)

10. A. Biswas, A.P. Chandrakasan, CONV-SRAM: An energy-efficient SRAM with in-memory
dot-product computation for low-power convolutional neural networks. IEEE J. Solid State
Circuits 54(1), 217–230 (2019)

11. C. Yu, K. Chai, T. Kim, B. Kim, A zero-skipping reconfigurable SRAM in-memory com-
puting macro with binary-searching ADC, in IEEE European solid-state circuit conference
(ESSCIRC), (IEEE, Piscataway, 2021), pp. 131–134

3 SRAM-Based Processing-in-Memory (PIM) 63

12. J. Kim, J. Lee, J. Heo, J.Y. Kim, Z-PIM: A sparsity-aware processing-in-memory architecture
with fully variable weight bit-precision for energy-efficient deep neural networks. IEEE J. Solid
State Circuits 56(4), 1093–1104 (2021)

13. W. Khwa et al., 31.5 a 65nm 4Kb algorithm-dependent computing-in-memory SRAM unit-
macro with 2.3ns and 55.8TOPS/W fully parallel product-sum operation for binary DNN
edge processors, in 2018 IEEE international solid-state circuits conference - (ISSCC), (IEEE,
Piscataway, 2018), pp. 496–498

14. X. Si et al., 15.5 a 28nm 64Kb 6T SRAM computing-in-memory macro with 8b MAC operation
for AI edge chips, in 2020 IEEE international solid-state circuits conference - (ISSCC), (IEEE,
Piscataway, 2020), pp. 246–248

15. J. Su et al., 15.2 a 28nm 64Kb inference-training two-way transpose multibit 6T SRAM
compute-in-memory macro for AI edge chips, in 2020 IEEE international solid-state circuits
conference - (ISSCC), (IEEE, Piscataway, 2020), pp. 240–242

16. H. Jia, M. Ozatay, Y. Tang, H. Valavi, R. Pathak, J. Lee, N. Verma, 15.1 a programmable
neural-network inference accelerator based on scalable in-memory computing, in 2021 IEEE
international solid-state circuits conference - (ISSCC), (IEEE, Piscataway, 2021), pp. 236–238

17. J. Yue et al., 15.2 a 2.75-to-75.9TOPS/W computing-in-memory NN processor supporting set-
associate block-wise zero skipping and ping-pong CIM with simultaneous computation and
weight updating, in 2021 IEEE international solid-state circuits conference - (ISSCC), (IEEE,
Piscataway, 2021), pp. 238–240

18. R. Guo et al., 15.4 a 5.99-to691.1 TOPS/W tensor-train in-memory-computing processor
using bit-level-sparsity-based optimization and variable-precision quantization, in 2021 IEEE
international solid-state circuits conference - (ISSCC), (2021), pp. 242–244

19. J. Su et al., 16.3 a 28nm 384kb 6T-SRAM computation-in-memory macro with 8b precision
for AI edge chips, in 2021 IEEE international solid-state circuits conference - (ISSCC), (IEEE,
Piscataway, 2021), pp. 250–252

20. M. Kang, S. Gonugondla, A. Patil, N. Shanbhag, A multi-functional in-memory inference
processor using a standard 6T SRAM array. IEEE J. Solid State Circuits 53(2), 642–655 (2018)

21. J. Zhang, Z. Wang, N. Verma, In-memory computation of a machine-learning classifier in a
standard 6T SRAM array. IEEE J. Solid State Circuits 52(4), 915–924 (2017)

22. H. Kim, T. Yoo, T. Kim, B. Kim, Colonnade: A reconfigurable SRAM-based digital bit-serial
compute-in-memory macro for processing neural networks. IEEE J. Solid State Circuits 56(7),
2221–2233 (2021)

23. H. Valavi, P. Ramadge, E. Nestler, N. Verma, A 64-tile 2.4-Mb in-memory-computing CNN
accelerator employing charge-domain compute. IEEE J. Solid State Circuits 54(6), 1789–1799
(2019)

24. K. Ando et al., BRein memory: A single-chip binary/ternary reconfigurable in-memory deep
neural network accelerator achieving 1.4 TOPS at 0.6 W. IEEE J. Solid State Circuits 53(4),
983–994 (2018)

25. Y. Chih et al., 16.4 an 89TOPS/W and 16.3TOPS/mm2 all-digital SRAM-based full-precision
compute-in memory macro in 22nm for machine-learning edge applications, in 2021 IEEE
international solid- state circuits conference (ISSCC), (IEEE, Piscataway, 2021), pp. 252–254

26. H. Sharma et al., Bit fusion: Bit-level dynamically composable architecture for accelerating
deep neural network, in Proc. 45th annual IEEE/ACM international symposium on computer
architecture (ISCA), (ACM, New York, 2018), pp. 764–775

27. P. Judd et al., Stripes: Bit-serial deep neural network computing, in Proc. 49th Annual
IEEE/ACM international symposium on microarchitecture (MICRO), (ACM, New York, 2016),
pp. 1–12

Chapter 4
DRAM-Based Processing-in-Memory

Donghyuck Kim and Joo-Young Kim

4.1 Introduction

This chapter explains various PIM architectures and implementations based on
DRAM technology. As illustrated in Fig. 4.1, we triage the DRAM-based PIMs
into three categories based on the level of logic integration. The first category is
the low-level PIM, which integrates logic with bitline sense amplifiers to utilize
the memory bank’s internal bandwidth fully. AMBIT [1] and DRISA [2] are
representative works. Second, Newton [3] by SK Hynix integrates multiply-and-
accumulate (MAC) units at the bank level, after the data sense amplifiers. Although
this method cannot utilize the maximum internal bandwidth as it integrates logic
after the column decoder, it has more space for logic integration. HBM-PIM [4]
by Samsung Electronics integrates processing units at the same level but for high-
bandwidth memory (HBM), a 3-d stacked memory. The last category is the 3-D
PIM, which utilizes the whole vertical stack of a 3-d stacked memory including the
base logic die for in-memory processing. Neurocube [5], Tetris [6], and iPIM [7]
fall into this category.

4.2 Basic DRAM Operation

Figure 4.2 shows the typical organization of a modern DRAM chip. It broadly
consists of control logic, multiple banks, and data IO circuitry. The DRAM bank is
made of DRAM mat, the basic 2-dimensional array structure with periphery circuits

D. Kim · J.-Y. Kim (�)
School of Electrical Engineering (E3-2), KAIST, Daejeon, South Korea
e-mail: kar02040@kaist.ac.kr; jooyoung1203@kaist.ac.kr

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J.-Y. Kim et al. (eds.), Processing-in-Memory for AI,
https://doi.org/10.1007/978-3-030-98781-7_4

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98781-7_4&domain=pdf
mailto:kar02040@kaist.ac.kr
mailto:jooyoung1203@kaist.ac.kr
https://doi.org/10.1007/978-3-030-98781-7_4

66 D. Kim and J.-Y. Kim

Fig. 4.1 DRAM PIM
architectures

Fig. 4.2 DRAM chip organization

to access the cells. In the mat, the row decoder specifies a single wordline and
drives it based on the address. Then, all the access transistors of the DRAM cells
connected to the wordline are activated, and the values are loaded into the bitlines.
Each DRAM cell, composed of a single transistor and a capacitor, starts to share the
stored charge with the bitline, which is pre-charged to half VDD when the transistor
is turned on. Slight voltage differences in the bitlines caused by the charge sharing
are amplified by the bitline sense amplifiers in the bottom. It is also called row buffer
because it stores the cell values of the entire row. Once an entire row is buffered in
the row buffer, the column decoder chooses one or more bitlines to transfer data to
the IO pads.

4 DRAM-Based Processing-in-Memory 67

4.3 Bulk Bitwise Processing-in-Memory

In this section, we study the DRAM-based PIMs that embed logic into the level of
memory cells/ bitline sense amplifiers, which is the lowest level you can possibly
design. In order to maximally use the internal read bandwidth, they enable multiple
rows at once and perform low-level logic operations such as AND, OR, or NOR for
entire rows at the bitline sense amplifiers. It is called bulk bitwise processing.

4.3.1 AMBIT

4.3.1.1 Triple Row Activation

As shown in Fig. 4.3, AMBIT activates three wordlines simultaneously, unlike the
regular DRAM only activates a single row at a time. If we look from the perspective
of a single bitline, three cells connected to the bitline are accessed at the same cycle.
Then, all the charges from the cells will be shared at the bitline. If the number of cells
charged with VDD (i.e., logical 1) is larger than the number of cells with no charge
(i.e., logical 0), the amount of net charge injecting to the bitline will be positive.
Since the bitline is already pre-charged to half-VDD , the final voltage level by the
charge sharing will be a bit higher than the half-VDD and eventually goes to VDD by
the sense amplifier. In other words, if the bitline has two or three charged cells, the
final voltage will be VDD . On the other hand, if the bitline has zero or one charged
cell, the final voltage value will be 0. Equation 4.1 shows the exact charge sharing
equation among the three cells by the triple row activation (TRA). Cc and Cb are
cell capacity and bitline capacity, respectively, and k is the number of 1s among the
three cells.

Fig. 4.3 Triple row activation

68 D. Kim and J.-Y. Kim

δ = k·Cc·VDD + Cb· 1
2VDD

3Cc + Cb

− 1

2
VDD = (2k − 3)Cc

6Cc + 2Cb

VDD (4.1)

The final value of the TRA becomes 1 if the number of 1s among three cells is
more than or equivalent to 2. It is the same as the majority function. Among the
three cell values (i.e., A, B, and C), if either A and B or B and C or C and A are 1,
then the final value will be 1. This is AB +BC +CA in a simple Boolean equation,
which is same as C(A + B) + C(AB). Based on this Boolean equation, we can
easily implement AND or OR function by controlling the C value. If C is set to 0,
the first term will be gone, so the final value will be AB. This is the AND operation
for all the bits between the entire two rows. Otherwise, if C is set to 1, the final
value will be A + B, the OR operation for the entire two rows. By presetting C and
enabling three rows simultaneously, we can implement AND or OR operation for
the entire bits of the two rows. As an entire row of a DRAM bank can be multiple
kilobytes (usually 1KB or 2KB), this TRA scheme enables multi-kilobytes bitwise
AND/OR operation. This is the main idea of the AMBIT. AMBIT utilizes the TRA
and the property of charge sharing in the bitlines, as it is difficult to integrate an
AND or OR gate within a pitch of the tiny DRAM cell because each gate requires
six transistors. Thanks to TRA, AMBIT implements bulk bitwise operations without
any transistors added to the sense amplifiers.

4.3.1.2 AMBIT DRAM Organization

Although AMBIT efficiently implements the bulk bitwise AND/OR operation using
TRA, it has some issues. First, the TRA re-writes the final result to the original cells
like a normal memory read does. As it activates three rows at the same time and gets
AND/OR values, it destroys the original values of the cells in the three rows. The
second issue is the cost of TRA. Since it needs to activate three rows simultaneously,
the decoding logic needs to decode three addresses at once. Because it causes a
linear increase in address bus and row decoding logic, the TRA puts a burden on the
control logic of the memory cell array.

To solve the above issues, AMBIT divides the row address space of the memory
subarray into three groups: (1) bitwise group (B-group), (2) control group (C-
group), and (3) data group (D-group), as shown in Fig. 4.4. B-group has eight
designated rows for bulk bitwise AND/OR operations with special decoding logic
for TRA. C-group pre-stores 0 and 1 to select AND and OR operation, respectively.
D-group stores the original data, occupying the most rows in the subarray. For C-
group and D-group, AMBIT uses the regular row decoder that does not require any
changes in design. For the operation, it copies the two rows of data from D-group to
the designated rows in B-group (i.e., T0 and T1). These two rows will be the input
operands of the bulk bitwise operation. It also initializes the designated row T2 to 0
(=AND) or 1 (=OR) to choose the operation. Then, it simultaneously activates the
three designated rows, T0, T1, and T2, for computation. Finally, it copies the result

4 DRAM-Based Processing-in-Memory 69

Fig. 4.4 AMBIT memory
organization

row T0 to a row in the D-group. Using three copies between the main D-group and
special-purpose B-group, AMBIT completes the bulk bitwise operation.

4.3.1.3 Fast Row Copy

AMBIT requires a lot of row-wide copies between the main D-group and the
special-purpose B-group designated for TRA. To reduce the long latency of the
row copies between the two groups, the authors utilize the method of RowClone-
FPM (Fast Parallel Mode) [8]. For a row-wide copy, a regular DRAM requires
an activation command followed by many column-read commands and the final
pre-charge command to read an entire row. It also needs an activation command
followed by many column-write commands and the final pre-charge command to
write a destination row. Unlike the regular DRAM requires lots of commands with
a very long latency of more than 1000 ns, the RowClone-FPM uses only three
commands: source row activation, destination row activation, and the pre-charge,
as shown in Fig. 4.5. By activating the destination row right after the source row
being amplified at the row buffer, RowClone-FPM copies the entire source row to
the destination row very efficiently, reducing the latency more than 10 times.

4.3.1.4 Bulk Bitwise NOT

Another problem with AMBIT’s AND/OR-based processing is that it is not
functionally complete. To be functionally complete, it needs NOT operation. To
address this, ABMIT utilizes the inverted value of the bitline sense amplifier. To
this end, it introduces a row of dual-contact cells (DCCs), in which each DCC has
an additional pair of wordlines and access transistor to move the inverted value of
the sense amplifier to the cell. Figure 4.6 illustrates how AMBIT works bulk bitwise
NOT operation with DCC. First, it activates the wordline of the source row, and the

70 D. Kim and J.-Y. Kim

Fig. 4.5 Fast row copy using RowClone-FPM

Fig. 4.6 Bulk bitwise NOT with dual-contact cell

sense amplifier evaluates the cell value. Then, it enables the n-wordline of the DCC,
which connects the inverted node of the sense amplifier and the cell in the DCC. If
the inverted value of the bitline is 0, the charge in the cell will be discharged to the
ground. Hence, the cell value of DCC is the same as the inverted value. On the other
hand, if the inverted value is 1, the cell will be charged to VDD . Therefore, AMBIT
successfully moves the inverted value of the source row to the DCC using the n-
wordline and its transistor. DCC uses d-wordline and its transistor when it needs to
copy the row of DCCs, the result of NOT operation, to another row.

The actual implementation of DCC may not be feasible as it requires one more
wordline and transistor to fit the pitch of a DRAM cell. In DRAM, the pitch of a
single cell is already optimized to having only a single transistor and a capacitor.
Adding another transistor and a wordline to it can be extremely challenging
(Table 4.1).

4 DRAM-Based Processing-in-Memory 71

Table 4.1 B-group address
table

Addr. Wordline(s) Addr. Wordline(s)

B0 T 0 B8 DCC0, T 0

B1 T 1 B9 DCC1, T 1

B2 T 2 B10 T 2, T 3

B3 T 3 B11 T 0, T 3

B4 DCC0 B12 T 0, T 1, T 2

B5 DCC0 B13 T 1, T 2, T 3

B6 DCC1 B14 DCC0, T 1, T 2

B7 DCC1 B15 DCC1, T 0, T 3

4.3.1.5 Row Addressing

Although the B-group has only eight physical rows, it contains 16 reserved
addresses, B0–B15. Table 4.1 lists the 16 addresses and the corresponding word-
lines. Among 16 addresses, the first four addresses, B0–B3, are designated for
operands (i.e., T0–T3), and the next four addresses, B4–B7, are assigned to two
DCC rows for bulk NOT operation. B8–B11 activates two wordlines simultaneously
for the copy. For example, B8 activates T0 and n-wordline of DCC0 to move
negated values to DCC0. B12–B15 actives three wordlines together for bulk bitwise
AND/OR operation. For example, B12 activates T0, T1, and T2 at the same time,
and the computed value will be re-written to all the rows.

4.3.1.6 AMBIT Command Execution

To execute the proposed bulk bitwise operation, which involves row-wide data
copies and logical computation, AMBIT supports a fused complex command
primitive named AAP (Activate–Activate–Pre-charge). By combining row activate,
row activate, and pre-charge back to back, the AAP primitive reduces the number
of required commands significantly. Hence, it reduces the total latency. Figure 4.7
shows how the basic logical operations can be done with the AAP primitive. AAP
(Di, B0) means that it activates Di from the D-group and activates B0 from the
B-group to copy Di to T0 and pre-charges for the following command. Likewise,
AAP (Dj, B1) copies the Dj from the D-group to T1. AAP(C0, B2) sets the
T2 to 0 for bulk AND operation. Finally, AAP(B12, Dk) executes TRA with B12,
and the final AND result will be copied to Dk in the D-group.

4.3.1.7 Evaluation

To evaluate the AMBIT architecture, the authors compare the raw throughput
of bulk bitwise operations of AMBIT, such as NOT, AND/OR, NAND/NOR,
and XOR/XNOR, against Intel Skylake CPU and NVIDIA GeForce GTX 745
GPU. As expected, AMBIT outperforms the others with DDR3 memories by 32x

72 D. Kim and J.-Y. Kim

Fig. 4.7 Programming with AAP command primitive

improvement in throughput and 44x reduction in energy consumption. For a real-
world application such as database bitmap indices, which utilizes bulk bitwise
operations a lot, AMBIT accelerates the baseline CPU operation by 6x on average.

4.3.2 DRISA

4.3.2.1 Motivation

The goal of DRISA is to merge the strength of memory-rich processors such GPUs
and ASIC-based neural processing units (NPUs) [9] and compute-capable PIMs
[1]. The memory-rich processors show high performances using abundant memory
bandwidth but have little memory capacity. On the other hand, compute-capable
PIMs suffer from low performance. To have both strengths, DRISA builds a PIM
accelerator based on DRAM technology. Like AMBIT, DRISA adds the logic
operations at the level of bitline sense amplifiers to leverage the maximal internal
bandwidth while minimizing the design changes from regular DRAM.

Figure 4.8 shows the overview of DRISA. The highlighted regions with green and
blue depict the building blocks that require design changes from a regular DRAM.
At the chip level, DRISA modifies the group and bank buffers to facilitate internal
data transfers. It also modifies the bank controller to control logic processing in
multiple subarrays in each bank. At the lowest cell matrix level, it adds logic gates
and shifters at the bottom of the DRAM cells.

4.3.2.2 Cell Microarchitectures

Unlike AMBIT uses the same DRAM cell architecture as the regular DRAMs for
feasibility/manufacturability, DRISA proposes three different DRAM cell architec-
tures: 3T1C, 1T1C-NOR/MIX, and 1T1C-ADDER (Fig. 4.9).

4 DRAM-Based Processing-in-Memory 73

Fig. 4.8 DRISA overview and design changes

Fig. 4.9 Three DRAM cells of DRISA

1T1C-NOR/MIX adds a NOR gate or other gates below each bitline sense
amplifier with a latch. It performs bitwise logic operation between the read operand
and the latched operand. On the other hand, 1T1C-ADDER adds the latches and a
parallel adder below multiple sense amplifiers. However, both of them are difficult
to be realized considering the extremely narrow DRAM cell pitch. The simplest case
requires 4 transistors for a NOR gate and 8 transistors for a latch. Having to route
metal connections as well, it is not trivial to integrate the logic within the DRAM
cell pitch, even for the simplest case.

The 3T1C cell, illustrated in more detail in Fig. 4.10, was used in early DRAM
design. It has separated wordlines, one for write and the other for read operation,
and two transistors to connect them (M1 and M3). The M2 transistor decouples
the other two transistors, and its gate is connected to the cell capacitor. If the M3
transistor is enabled, it is connected to the read bitline BL2 with having the cell
capacitor as the input value. From the bitline perspective, M2 transistors connected
in parallel implement NOR operation. In other words, if only a single cell value is
1, the bitline value will go to the ground. Using this native NOR configuration of
the 3T1C cell, DRISA can perform bulk bitwise NOR operations between the two

74 D. Kim and J.-Y. Kim

Fig. 4.10 3T1C cell for native NOR operation

Fig. 4.11 NOR-based
selector logic implementation

rows. When it activates two wordlines through M3 transistors simultaneously, the
bitlines will eventually have the NOR result between the two rows.

4.3.2.3 Computing Using NOR Operation

While AMBIT utilizes bitwise AND/OR and NOT operation to implement logic
functions, DRISA only uses bitwise NOR operation as it is functionally complete.
As explained in the previous section, DRISA activates two rows simultaneously
to compute bitwise NOR operation using the native NOR connection of the 3T1C
cells. Figure 4.11 illustrates the DRISA’s NOR-based selector, or multiplexer, logic
implementation. The Boolean equation for the selector is R = SX+ ∼ SY ,and this
can be re-written as R =∼ NOR(NOR(∼ S,∼ X),NOR(S,∼ Y) using 3 NOR
operations and 4 NOT operations. NOT operation can also be computed using NOR
by having one of the input operands to 0 (NOT (X) = NOR(0, X)). As a result,
the bulk bitwise selector logic can be done in 7 steps in DRISA.

As the bulk bitwise operation applies the same low-level logic operations to all
the bits, mapping higher-level logic functions is not straightforward. To address
this problem a little bit, DRISA includes shifters under the bitline sense amplifiers
for data communication among neighbor bitlines. As a simple but essential use

4 DRAM-Based Processing-in-Memory 75

Fig. 4.12 Shifting operations in DRISA

Fig. 4.13 Transistor-level shifter circuits

case, the shifter can propagate carry-out signals to the neighbor bitlines in addition.
Specifically, DRISA supports three types of shifting operations: intra-lane, inter-
lane, and forwarding, as shown in Fig. 4.12. As the name implies, intra-lane shift is
a single-bit shift to the neighbor bitlines inside the lane, and inter-lane shift is a shift
in a lane unit such as byte shift or word shift. The lane means a unit of data, such as
8 bits or 16 bits. Forwarding is just a read without any shift applied.

As the shifter implementation can be complex, DRISA proposes transistor-level
shifter circuits. Figure 4.13 shows the 4-bit intra-lane shifter circuits with the
example of left shift by 2 and right shift by 3, where rBL, wBL, and FL means read
bitline, write bitline, and filling line, respectively. According to the control lines in
the bottom (L0, L1, L2, R1, and R3), only the necessary transistors are enabled for
barrel shifting operations. For example, the read bitlines of columns 3 and 4 are
enabled, and the read values are transferred to columns 1 and 2, respectively, for the
left shift by 2.

4.3.2.4 Evaluation

To evaluate the proposed processing-in-memory architecture, the authors heavily
modify CACTI-3DD [10] for circuit-level simulation. CACTI-3DD is a highly
accurate circuit-level DRAM simulator that provides DRAM’s latency, energy con-
sumption, and area. They also use Synopsys’s Design Compiler for the controllers
and adders in the 1T1C-adder configuration. They use the logic process simply

76 D. Kim and J.-Y. Kim

Fig. 4.14 DRISA experimental results

because the DRAM process’s technology information is unavailable. Instead, they
scale the two different technologies based on an old technical paper [11], which
states the DRAM process is 22% slower and 80% bigger than a comparable
logic process. However, we cannot be convinced that this scaling is still valid as
the two processes have been differed a lot since then. They also create an in-
house behavior-level performance simulator from scratch, which evaluates DRISA’s
latency and power consumption for a given task. In addition to memory organization
changes, the performance simulator gets neural network topology and mapping
configurations as input.

Figure 4.14 shows the area-normalized performance results of the various
DRISA configurations against the Nvidia Titan X GPU. It measures the number
of frames per second on CNN models such as AlexNet [12], VGG-16 [13], VGG-
19, and ResNet-152 [14] with batch sizes of 1, 8, and 64. Interestingly, 3T1C case is
not good because of its large memory cell area. 1T1C-ADDER is also not the best
because the computing and data movement are not balanced. Out of this experiment,
1T1C-MIXED case that attaches NAND, NOR, XNOR, and INV gate to a sense
amplifier performs best, thanks to its logic coverage.

4.4 Bank-Level Processing-in-Memory

The bulk bitwise operation that implements logic at the bitline sense amplifier level
is the best in terms of internal data bandwidth. However, area constraint for this
method is the toughest because of the narrow cell pitch; the cell pitch has kept
decreasing to integrate more cells, having a high capacity. The next possible level
is bank level, which integrates processing logic after column decoder and selector.
Since the processing logic can enjoy the whole width of the cell array, not a single
cell pitch, it is more affordable to add logic functions in the space. In addition, as
every commercial DRAM has column selectors, this method is less invasive as it

4 DRAM-Based Processing-in-Memory 77

does not change any design at the cell array matrix. Also, it utilizes the possible
maximum bandwidth of the existing DRAM architectures.

4.4.1 Newton

4.4.1.1 Motivation

Newton is a feasible accelerator-in-memory architecture in a commercial DRAM
proposed by one of the major DRAM makers, SK Hynix. Since they know that the
DRAM process requires more-than-expected area in making logic gates, they chose
to integrate logic at the bank level, i.e., after column select, rather than at the bitline
sense amplifier level. By doing this, Newton gains enough physical space for logic
integration, while it loses internal bandwidth.

Rather than targeting generic DNN workloads, Newton tries to find a good match
in applications, which its PIM architecture can address well. It focuses on memory-
bound deep learning models such as language models (e.g., Google’s BERT [15]
and OpenAI’s GPT [16]) and recommendation systems (e.g., Facebook’s DLRM
[17]). These models are easily bottlenecked by memory read bandwidth because
they have huge model sizes with low-data reuse opportunities, mainly caused by
massive matrix-vector multiplications. Therefore, the PIM architecture that supports
sufficient internal read operations with lightweight logic processing can be very
effective for this type of models. The opposite case will be deep CNN models
that require more computations per data read with a high-data reuse opportunity.
In conclusion, Newton targets the deep learning models with fully connected layers
for a single-batched inference scenario.

4.4.1.2 Architecture

Figure 4.15 shows the overall architecture of Newton in a single DRAM die. It has
a total of 16 banks where each bank includes 16 multipliers, 16 adders, and 16-bit
accumulation register. As mentioned earlier, it integrates the above logic gates after
the column decoder, i.e., 32:1 column mux in the diagram, to make it feasible with
minimizing the changes in the memory bank design. Unlike AMBIT or DRISA, it
does not have to change the design in row decoder and row drivers because it does
not require multi-row activation.

Newton activates a single row in a bank, like in a normal DRAM, which has the
size of 1KB. Among them, only 32 bytes are selected after 32:1 column select. As
Newton uses the half-precision floating-point data type (FP16), it reads 16 FP16
data at a time out of 512 FP16 data in a row. Each of FP16 data enters to an input
of each multiplier. The other input comes from the global buffer. The multipliers
multiply between the 16 FP data from the global buffer and the 16 FP data from the

78 D. Kim and J.-Y. Kim

Fig. 4.15 Newton architecture

bank, and the 16 products are accumulated through the adder tree to a single FP16
result.

In Newton, the global buffer broadcasts an input vector to the memory banks,
while the banks store different parts of the weight matrix, as illustrated in Fig. 4.16.
The large weight matrix is chunked into tiles, whose size is 16 rows by 512 FP16
data, and the rows in a tile are interleaved over the multiple banks. The input vector
is also segmented into the groups of 512 FP16 data, and they are distributed to the
banks for matrix-vector operation. To increase the internal read bandwidth, Newton
activates multiple banks at the same time. This multi-bank activation, or bank-level
parallelism, is a key differentiator from a regular DRAM. It increases the internal
read bandwidth and, hence, its compute bandwidth.

4.4.1.3 Newton’s Operation

Figure 4.17 shows the overall operation of Newton, including new commands and
multi-bank activation for PIM operations. First, it loads the global buffer with the
input vector data using GWRITE command. Then, it activates multiple banks using
G_ACT command. Although activating all 16 banks would be the best option for
achieving high throughput, it is difficult because of power and voltage drop issue.
In this chapter, Newton can activate four banks at a time and needs an interval time

4 DRAM-Based Processing-in-Memory 79

Fig. 4.16 Data mapping in Newton

Fig. 4.17 Newton’s PIM operations

80 D. Kim and J.-Y. Kim

to the next multi-bank activation. This interval time is defined as four-activation
timing window or TFAW . After issuing G_ACT command four times to activate all
the 16 banks, Newton performs in-bank multiply-and-accumulate (MAC) operations
using COMP command. The COMP command applies to all the banks and repeats 32
times to cover an entire row, noting that Newton integrates logic gates after the 32:1
column select. To cover a complete row during the global bank activation, it needs
to repeat the COMP command. After the COMP commands, each bank should have
the final accumulation result. Using READRES command, the top controller gathers
all the results from the banks.

To reduce the time for an overall PIM operation, reducing the interval between
multi-bank activations, or TFAW , is important. As DRAM already has several
internal voltage domains with lots of transistor loads under them, it is quite
challenging to activate multiple banks simultaneously because it causes a severe
internal voltage drop. To have a small TFAW , internal low-dropout (LDO) regulator
and DC–DC pump driver should be designed to provide enough strength.

4.4.1.4 Evaluation

Newton evaluates its speedup performance by comparing ideal non-PIM, non-
optimized Newton, and Newton architecture to Nvidia Titan V GPU. Ideal non-PIM
architecture belongs to the conventional von Neumann architecture but with the
assumption of unlimited computed bandwidth. Its only bottleneck is the DRAM’s
off-chip memory bandwidth. While, non-optimized Newton architecture is used
as a reference model with five Newton features eliminated, described in previous
sections: all-bank ganged command (ganged), complex multi-step commands
(complex), reuse input by interleaved layout and tiling mechanism (reuse), four-bank
activation (four bank), and improved TFAW . Newton architecture and non-optimized
Newton architecture are simulated using modified DRAMSim2 [18], and the
ideal non-PIM is simulated using GPGPU-Sim [19]. Newton uses matrix-vector
multiplication benchmarks from GNMT LSTM [20], BERT [15], fully connected
layers from AlexNet [12], and DLRM [17]. Newton’s DRAM configuration for
simulation is set to HBM2E. Figure 4.18 shows the result of speedup over GPU.
Newton proves that PIM is indispensable by showing the limitations of GPU in
computing memory-bound applications. The result shows that Newton achieves
54× speedup over Titan-V GPU on average across individual layers, while ideal
non-PIM achieves only up to 5.4× speedup. Additionally, Newton discusses the
importance of the optimization in PIM commands. Figure 4.19 shows the analysis
result of non-optimized Newton architectures. Starting from non-opt Newton
without any features, each feature is gradually added in a given order appeared in
the graph one by one. Non-optimized Newton shows 48% speedup over the Titan-
V GPU, while the Newton with all the optimization schemes offers 54× speedup.
Especially, the gang commands increase the performance the most with its all-bank
operation that reduces the command bandwidth by 16×. The complex commands
additionally reduce command bandwidth by 3×.

4 DRAM-Based Processing-in-Memory 81

Fig. 4.18 Newton’s speedup evaluation

Fig. 4.19 Isolating Newton’s optimization

4.4.2 HBM-PIM

4.4.2.1 Motivation

HBM-PIM is the first fabricated stacked-DRAM-based PIM solution from Sam-
sung, one of the major memory vendors. As shown in Fig. 4.20, it has 8 DRAM
channels with a total of 1024 pins and integrates programmable compute units in
4 out of 8 DRAM dies. Each DRAM die includes 16 banks with 128 IO pins,
where each bank’s capacity is 64MB (32MB with PIM) and each pin’s bandwidth is
2.4 Gbps. Unlike Newton, which includes the logic with the fixed function, HBM-
PIM includes the logic with a bit of programmability to address the computational
requirements of AI applications.

82 D. Kim and J.-Y. Kim

Fig. 4.20 HBM-PIM overview

Fig. 4.21 HBM-PIM architecture

4.4.2.2 HBM-PIM Architecture

Figure 4.21 shows the overall architecture of HBM-PIM, illustrating how it is
evolved from the existing HBM2 design. The left diagram shows the architecture
of a single DRAM die used in the conventional HBM2. It has 16 banks in total,
where each bank has a row decoder and a column decoder, while the two banks in
the top and bottom share the IO sense amplifiers. Four banks make up a bank group,
and the bank group shares the 256-bit bank group bus, which eventually muxed into
the global bus. Since this is 3-d stacked memory, the global bus goes down to the
base die through the through-silicon-via (TSV) area.

On the right side, the HBM-PIM integrates a programmable compute unit (PCU)
per two banks. Each bank pair now shares the PCU with the separate IO sense
amplifiers. It also introduces the 256-bit local data buses that interconnect each

4 DRAM-Based Processing-in-Memory 83

Fig. 4.22 Internal PIM controller

bank and the shared PCU. In addition, the PIM controller for operating the PCUs
is integrated in the TSV area. To maximize its internal bandwidth, HBM-PIM uses
the bank-level parallelism, as Newton does. As two banks share one compute unit to
limit the power and area cost, it activates half of the banks (i.e., even banks or odd
banks) in the die at the same time.

4.4.2.3 HBM-PIM Controller

From the host side, the proposed HBM-PIM is seen exactly the same as a
regular HBM, being compatible with the existing DRAM interfaces. With the PIM
instructions stored in the command register file in the PCU, the host can control
every PIM instruction with conventional load and store instructions to specific
memory addresses. The only thing the controller inside the DRAM should do is
the mode change between the normal and PIM.

As shown in Fig. 4.22, the internal PIM controller decodes specific combinations
between the command and address to generate a mode change signal. For example,
if the row activate (ACT) command comes with a specific address in bank 0,
PIM_Even signal is asserted. Likewise, if the same command and an address come
in for bank 1, PIM_Odd signal is asserted. Only if both signals are asserted, the
mode changes to the PIM mode. With the start of PIM mode, the PCU gets its clock
to run the PIM instructions. Once the PIM operations finish, the controller changes
the PIM mode to normal, again with the combination of a command and a specific
address.

4.4.2.4 Programmable Computing Unit

In the execution model, the major difference between Newton and HBM-PIM is that
Newton adds a few special PIM commands to use the integrated arithmetic units

84 D. Kim and J.-Y. Kim

Fig. 4.23 Programmable computing unit

with a fixed function, while HBM-PIM changes the mode to activate the compute
unit named PCU. PCU is a programmable unit with its own instructions. Figure 4.23
shows the block diagram of the PCU, consisting of an interface unit, execution
unit, and register group. The interface unit receives control and data signals from
the memory’s command controller. The execution unit includes a pair of 16 FP16
multipliers and adders. Each of them has a 5-stage pipeline and works in parallel
with single-instruction multiple-data (SIMD) fashion.

The register group includes the command register file (CRF), general-purpose
register file (GRF), and scalar register file (SRF). The CRF buffers up to 32 32-
bit PIM instructions. The GRF composed of sixteen 256-bit registers is evenly
divided into GRF_A and GRF_B for even bank and odd bank, respectively. The
SRF replicates a scalar value to a vector and performs scalar multiplications or scalar
additions to a source operand from GRF. Like other in-order cores, the PCU fetches
a PIM instruction from the CRF, decodes it, reads source operands to the SIMD
FP units, and stores the result back to the GRF. Table 4.2 shows the overall 9 PIM
instructions.

4.4.2.5 Operation Flow

HBM-PIM has three operational steps. First, the host stores input data to the DRAM
cell arrays. As it is set to normal mode with initialization, the host accesses each
bank as a regular DRAM. Then, the host changes the operation mode from normal
to PIM. Second, the host sends instructions and weight data to PCUs via the DQ
interface. The PCU can save up to 32 instructions in the CRF, and its program
counter reads the instructions one by one from address 0. Third, once each PCU

4 DRAM-Based Processing-in-Memory 85

Table 4.2 PCU instructions Type Command Description

Floating point ADD FP 16 addition

MUL FP 16 multiplication

MAC FP 16 multiply-and-accumulate

MAD FP 16 multiply and add

Data path MOVE Load or store data

FILL Copy data from bank to GRFs

Control path NOP Do nothing

JUMP Jump instruction

EXIT Exit instruction

Fig. 4.24 HBM-PIM operations

completes the PIM operations such as matrix-vector multiplication, it transfers the
results in the GRF to the DRAM cell arrays. Note that it is done across multiple
banks (even or odd banks). The host finally switches the mode back to normal and
reads the results from each bank. The flow chart in Fig. 4.24 summarizes the overall
operation flow of HBM-PIM.

86 D. Kim and J.-Y. Kim

Fig. 4.25 Data buses in HBM-PIM

4.4.2.6 Data Movements

As HBM-PIM introduces PCUs between even and odd banks, it needs data buses
to transfer data among them. The local data buses are responsible for data transfers
between PCUs and banks. With the MOVE command, the PCU can load data from
the cell array to the GRF or store data from the GRF to the cell array. This is a multi-
bank operation; either even or odd banks can be enabled simultaneously. The host
uses the bank group global bus to issue instructions and weight data to the PCUs.
Figure 4.25 depicts the two types of buses for data movements in HBM-PIM.

4.4.2.7 Implementation Results

HBM-PIM is the first PIM chip ever fabricated in HBM using a 20 nm DRAM
process. Figure 4.26 shows the chip micrograph and measurement results. It
achieves 2.4 Gbps/pin operation, without power consumption increase from HBM2,
and PCU operation at 300 MHz. In addition, an FPGA-based test platform and an
emulation environment confirm the system performance can improve by 2.1× for
DeepSpeech2 benchmark [21] while reducing the system energy by 71% compared
to a typical GPU system using HBM2.

4 DRAM-Based Processing-in-Memory 87

Fig. 4.26 HBM-PIM chip photo and measurement results

4.5 3-D Processing-in-Memory

In this section, we look into the PIM architectures using full 3-d vertical stacking of
memory and logic. The HBM-PIM that we describe in Sect. 4.4 is a 2.5-d solution;
it puts the logic module and HBM side by side via silicon interposer. On the other
hand, the full 3-d stacking means the integration of the logic die in the bottom with
the stacked memories like an HBM on top of it. Since it stacks the main compute
die and stacked memory dies, it is further advanced from HBM, expecting more
energy-efficient data communications between the two entities. Hybrid memory
cube (HMC) is the main example of this. However, the realization of 3-d PIM can be
difficult due to tight physical and timing constraints among 3-d stacked dies. All the
proposed 3-d PIM architectures are evaluated only using simulation. In this section,
we briefly review a few works based on the 3-d PIM architecture.

4.5.1 Neurocube

Neurocube [5] is one of the earliest architectures that demonstrates the feasibility
and performance benefits of using a 3-d high-density memory package for deep

88 D. Kim and J.-Y. Kim

Fig. 4.27 Neurocube architecture

neural networks. As shown in Fig. 4.27, the Neurocube architecture is designed
in the logic die of an HMC, consisting of the global controller, programmable
neurosequence generators (PNGs), and processing elements (PEs) connected by
a network-on-chip. While, each PE is assigned for a set of vertically connected
DRAM banks called vault. The PE is the main computing unit having multiple
multiply-and-accumulate (MAC) units to accelerate deep neural network compu-
tations. The PNG generates a correct sequence of data accesses to the vault using
the vault controller and pushes them into the MAC units. The network-on-chip with
2-d mesh topology interconnects all the PEs to enable inter-vault communications
for various data mappings and operations.

4.5.2 Tetris

Tetris [6] architecture is based on Neurocube architecture. The HMC stack is
vertically divided into sixteen 32-bit-wide vaults, in which each vault functions
as a channel that controls all the banks inside (two banks per die). Different from
Neurocube, Tetris chooses an array design for processing units. Each processing unit
includes a small global on-chip buffer to maximize data reuse opportunities. Tetris
also proposes a scheduling algorithm for efficient data flow. Focusing on input data
reuse, it buffers the input feature maps on the global buffer with tiling and streams
the output feature maps and weight filters directly to/from the external memory.
Figure 4.28 illustrates Tetris architecture.

4 DRAM-Based Processing-in-Memory 89

Fig. 4.28 Tetris architecture

Fig. 4.29 iPIM architecture

4.5.3 iPIM

iPIM [7] compromises the 3-d PIM approach that Neurocube and Tetris used and
the bank-level PIM approach that Newton and HBM-PIM used, in order to increase
effective compute bandwidth and reduce energy spent from data movements via
TSVs. As Fig. 4.29 shows, iPIM’s vault architecture decouples the role to control
and execution. The logic die includes the iPIM core that performs complex control
operations such as instruction decoding and issuing, and memory bank controls. On
the other hand, the process group (PG), integrated into each DRAM die of a vault,
performs simple but memory-intensive operations at near bank. To enable massive
bank-level concurrent execution, iPIM proposes single-instruction multiple-bank
(SIMB) instructions, including computation, index calculation, intra/inter-vault data
movement, and synchronization operation.

90 D. Kim and J.-Y. Kim

References

1. V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M.A. Kozuch, O. Mutlu,
P.B. Gibbons, T.C. Mowry, Ambit: In-memory accelerator for bulk bitwise operations using
commodity DRAM technology, in 2017 50th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, Piscataway (2017), pp. 273–287

2. S. Li, D. Niu, K.T. Malladi, H. Zheng, B. Brennan, Y. Xie, DRISA: a DRAM-based
reconfigurable in-situ accelerator, in 2017 50th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, Piscataway (2017), pp. 288–301

3. M. He, C. Song, I. Kim, C. Jeong, S. Kim, I. Park, M. Thottethodi, T.N. Vijaykumar, Newton:
a DRAM-maker’s accelerator-in-memory (AiM) architecture for machine learning, in 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE,
Piscataway (2020), pp. 372–385

4. S. Lee, S.-h. Kang, J. Lee, H. Kim, E. Lee, S. Seo, H. Yoon, S. Lee, K. Lim, H. Shin, J. Kim,
O. Seongil, A. Iyer, D. Wang, K. Sohn, N.S. Kim, Hardware architecture and software stack
for PIM based on commercial DRAM technology: Industrial product, in 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture (ISCA). IEEE, Piscataway (2021),
pp. 43–56

5. D. Kim, J. Kung, S. Chai, S. Yalamanchili, S. Mukhopadhyay, Neurocube: a programmable
digital neuromorphic architecture with high-density 3D memory. ACM SIGARCH Comput.
Archit. News 44(3), 380–392 (2016)

6. M. Gao, J. Pu, X. Yang, M. Horowitz, C. Kozyrakis, TETRIS: scalable and efficient neural
network acceleration with 3d memory, in Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and Operating Systems
(2017), pp. 751–764

7. P. Gu, X. Xie, Y. Ding, G. Chen, W. Zhang, D. Niu, Y. Xie, iPIM: programmable in-memory
image processing accelerator using near-bank architecture, in 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA). IEEE, Piscataway (2020), pp.
804–817

8. V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhimenko, Y. Luo, O. Mutlu,
P.B. Gibbons, M.A. Kozuch, T.C. Mowry, RowClone: Fast and energy-efficient in-DRAM
bulk data copy and initialization, in Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture, (2013), pp. 185–197

9. N.P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N.
Boden, R.B. Al Borchers, P.-l. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean,
B. Gelb, T.V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C.R. Ho, D. Hogberg,
J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew,
A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin,
G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni,
K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E.
Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan,
G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, D.H.
Yoon, In-datacenter performance analysis of a tensor processing unit, in Proceedings of the
44th Annual International Symposium on Computer Architecture, (2017), pp. 1–12

10. K. Chen, S. Li, N. Muralimanohar, J.H. Ahn, J.B. Brockman, N.P. Jouppi, CACTI-3DD:
architecture-level modeling for 3D die-stacked DRAM main memory, in 2012 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE, Piscataway (2012),
pp. 33–38

11. Y.B. Kim, T.W. Chen, Assessing merged DRAM/logic technology. Integration 27(2), 179–194
(1999)

12. A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional
neural networks. Adv. Neural Inform. Process. Syst. 25, 1097–1105 (2012)

13. K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recogni-
tion (2014). arXiv preprint arXiv:1409.1556

4 DRAM-Based Processing-in-Memory 91

14. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 770–778

15. J. Devlin, M.W. Chang, K. Lee, K. Toutanova, BERT: pre-training of deep bidirectional
transformers for language understanding (2018). arXiv preprint arXiv:1810.04805

16. OpenAI, GPT-3 powers the next generation of apps, In: OpenAI (2021). https://openai.com/
blog/gpt-3-apps/. Accessed 5 Nov 2021

17. M. Naumov, D. Mudigere, H.-J.M. Shi, J. Huang, N. Sundaraman, J. Park, X. Wang, U.
Gupta, C.-J. Wu, A.G. Azzolini, D. Dzhulgakov, A. Mallevich, I. Cherniavskii, Y. Lu, R.
Krishnamoorthi, A. Yu, V. Kondratenko, S. Pereira, X. Chen, W. Chen, V. Rao, B. Jia, L.
Xiong, and M. Smelyanskiy, Deep learning recommendation model for personalization and
recommendation systems (2019). arXiv preprint arXiv:1906.00091

18. P. Rosenfeld, E. Cooper-Balis, B. Jacob, DRAMSim2: a cycle accurate memory system
simulator. IEEE Comput. Archit. Lett 10(1), 16–19 (2011)

19. A. Bakhoda, G.L. Yuan, W.W. Fung, H. Wong, T.M. Aamodt, Analyzing CUDA workloads
using a detailed GPU simulator, in 2009 IEEE International Symposium on Performance
Analysis of Systems and Software. IEEE, Piscataway (2009), pp. 163–174

20. Y. Wu, M. Schuster, Z. Chen, Q.V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q.
Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, Ł. Kaiser, S. Gouws, Y. Kato,
T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J.
Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, J. Dean, J. Google’s neural machine
translation system: bridging the gap between human and machine translation (2016). arXiv
preprint arXiv:1609.08144

21. D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg, C. Case, J. Casper, B.
Catanzaro, Q. Cheng, G. Chen, J. Chen, J. Chen, Z. Chen, M. Chrzanowski, A. Coates, G.
Diamos, K. Ding, N. Du, E. Elsen, J. Engel, W. Fang, L. Fan, C. Fougner, L. Gao, C. Gong, A.
Hannun, T. Han, L. Johannes, B. Jiang, C. Ju, B. Jun, P. LeGresley, L. Lin, J. Liu, Y. Liu, W. Li,
X. Li, D. Ma, S. Narang, A. Ng, S. Ozair, Y. Peng, R. Prenger, S. Qian, Z. Quan, J. Raiman, V.
Rao, S. Satheesh, D. Seetapun, S. Sengupta, K. Srinet, A. Sriram, H. Tang, L. Tang, C. Wang,
J. Wang, K. Wang, Y. Wang, Z. Wang, Z. Wang, S. Wu, L. Wei, B. Xiao, W. Xie, Y. Xie, D.
Yogatama, B. Yuan, J. Zhan, Z. Zhu, Deep speech 2: End-to-end speech recognition in English
and mandarin, in International Conference on Machine Learning (2016), pp. 173–182. PMLR

https://openai.com/blog/gpt-3-apps/
https://openai.com/blog/gpt-3-apps/

Chapter 5
ReRAM-Based Processing-in-Memory
(PIM)

Tony Tae-Hyoung Kim, Lu Lu, and Yuzong Chen

5.1 Introduction

Emerging applications such as artificial intelligence and machine learning have
created interest in hardware accelerators for processing parallel data considerably
in various neural networks. One of the most critical arithmetic functions in neural
networks is Multiply-and-Accumulate (MAC). In the conventional computing
architecture (i.e., Von Neumann architecture), processing elements and memory
are separated. MAC operations require massive data transfer between process-
ing elements and memory, which consumes a huge amount of power. Recently,
processing-in-memory (PIM) architectures have been introduced to address the
bottleneck of Von Neumann architecture [1–10]. Since PIM architectures include
local computing circuits and memory, we can minimize the data transfer from/to
external memory. In general, it is well known that the PIM architectures can
improve energy efficiency by orders of magnitude. While SRAM and DRAM are
commonly considered in PIM architectures, ReRAM has also gained increasing
interest because of the accelerator development for edge computing [11–17]. Many
edge devices such as wearables, IoT devices, and biomedical devices require high
energy efficiency with compromised performance. Particularly, the edge devices
process data scarcely and mostly stay in the standby condition. Since ReRAM
offers moderate performance and non-volatility, ReRAM-based PIM architectures
can be promising solutions for edge computing. However, ReRAM technologies
are not mature yet, and various design issues for ReRAM-based PIM should be
tackled comprehensively. In this chapter, we will introduce various ReRAM-based

T. T.-H. Kim (�) · L. Lu · Y. Chen
Nanyang Technological University, Singapore, Singapore
e-mail: thkim@ntu.edu.sg; Lu_Lu@ime.a-star.edu.sg; yuzong@nus.edu.sg

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J.-Y. Kim et al. (eds.), Processing-in-Memory for AI,
https://doi.org/10.1007/978-3-030-98781-7_5

93

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98781-7_5&domain=pdf
mailto:thkim@ntu.edu.sg
mailto:Lu_Lu@ime.a-star.edu.sg
mailto:yuzong@nus.edu.sg
https://doi.org/10.1007/978-3-030-98781-7_5

94 T. T.-H. Kim et al.

PIM designs covering from unit cells, circuit techniques, and architectures. Besides
MAC, other essential logic-in-memory functions will also be discussed.

5.2 Basic ReRAM PIM Operation

Figure 5.1 illustrates a typical ReRAM array for PIM. In general, the ReRAM array
for PIM looks the same as the ReRAM array for regular memory operation. Since
the 1T1R ReRAM cell is compact and can provide high density, many ReRAM PIM
accelerators are designed using the typical 1T1R ReRAM cell. The key difference
between normal ReRAM and ReRAM PIM is the number of rows that are activated
simultaneously. In normal ReRAM, only one row is accessed at a given time for
programming and read operation. However, ReRAM PIM accesses multiple rows
for reading operation, which is the most frequently executed operation for neural
networks. Activating multiple rows will create multiple current components in each
bitline, which is used as an analog multiply-and-accumulate (MAC) result. The
analog MAC output can be represented as follows:

MAC =
v∑

i=0

INi × Wi =
v∑

i=0

IMC[i]

Here, INi, Wi, IMC[i], and v are input signal, weight, cell current, and the
number of selected rows, respectively. INi affects WLs in Fig. 5.1 and is usually
represented by multiple voltage levels or time durations, depending on the required

WL[0]

WL[i]

WL[1]

BL
[0

]

BL
[n

]

BL
[1

]

SL[0]

SL[i]

SL[1]

GND

GND

Fig. 5.1 ReRAM array for PIM

5 ReRAM-Based Processing-in-Memory (PIM) 95

number of bits. Wi is stored in ReRAM devices and also requires multiple cells
for realizing a multi-bit weight. The multiple cells can be located at multiple rows
in the same column or at multiple columns in the same row, which is determined
by the employed ReRAM macro architecture. When one column is used for MAC
operation, the bitline current of each column (BL[i]) represents a MAC result and
is digitized by an analog-to-digital converter (ADC). Using multiple columns needs
additional control circuits for merging the bitline currents from the multiple columns
and generating the final output current. Digitization will be performed using the
final output current. Recently, multi-bit ReRAM devices have been reported, which
allows a ReRAM cell to store a multi-bit weight [18–21]. The number of ReRAM
cells for generating a MAC result will decrease when employing the multi-bit
ReRAM devices. Therefore, higher density ReRAM PIM macros can be realized
using the same ReRAM array density. However, multi-bit ReRAM technology is not
mature and shows large variations. Therefore, the application of it is still limited.

5.3 Multiplication in ReRAM PIMs

5.3.1 Binary Multiply

Table 5.1 shows how a ReRAM cell can be used for binary multiply. When two
binary bits, input, and weight, are multiplied, the output will be either logic “1” or
logic “0.” In 1T1R ReRAM cell, the input is applied to the wordline (WL[i] in Fig.
5.1), and the weight is stored in the ReRAM device. In general, the high resistance
state (HRS) and the low resistance state (LRS) represent “0” and “1,” respectively.
When the input is “0,” the access transistor in the 1T1R cell is off, and no current
will flow through the cell (IMC = 0). When the input is “1,” the access transistor is
on, and the current will be determined by the ReRAM device state. If the ReRAM
device in HRS (Weight = “0”), the current (IMC) will be IHRS. When the ReRAM
device is in LRC, ILRS will flow through the cell. Here, it needs to be noted that
the binary multiply result of “0” is represented by two different current values (i.e.,
0 and IHRS), which will degrade the sensing margin. The impact of IHRS will be
more significant when a large number of rows are activated for the multiply-and-
accumulate (MAC) operation. In this case, IHRS in multiple ReRAM devices will
be added. It becomes more difficult to generate accurate MAC results because of
the unwanted IHRS. Therefore, the number of rows to be accessed at the same time
should be decided carefully after considering the impact of IHRS. The impact of IHRS
will be mitigated by increasing the ratio of ILRS to IHRS.

96 T. T.-H. Kim et al.

Table 5.1 Binary multiply in
ReRAM

Input (IN) Weight (W) Product (IN × W) IMC

0 0 (HRS) 0 0
0 1 (LRS) 0 0
1 1 (LRS) 1 ILRS

1 0 (HRS) 0 IHRS

Table 5.2 Multiply with ternary weight in ReRAM [11]

Input

(IN)

Ternary

weight

nvCIM-P nvCIM-N

Weight

(W)
IN × W IMC

Weight

(W)
IN × W IMC

0
+1

+1 (LRS) 0 0 0 (HRS) 0 0

1 +1 (LRS) +1 ILRS 0 (HRS) 0 IHRS

0
0

0 (HRS) 0 0 0 (HRS) 0 0

1 0 (HRS) 0 IHRS 0 (HRS) 0 IHRS

0
−1

0 (HRS) 0 0 −1 (LRS) 0 0

1 0 (HRS) 0 IHRS −1 (LRS) −1 ILRS

5.3.2 Multiplication with Ternary Weight

Multi-bit weights can be realized by using multiple ReRAM cells. Table 5.2 shows
an example of realizing multiplication of 1-bit input (IN) with a ternary weight
[11]. The ternary weight is implemented with two ReRAM cells, one in the positive
array (nvCIM-P) and the other in the negative array (nvCIM-N). The weight in the
positive array includes only “+1(LRS)” and “0(HRS)” while that in the negative
array includes “-1(LRS)” and “0(HRS).” The ternary multiply result is obtained by
combining the results from the positive and negative arrays as depicted in Table 5.2.
The multiply result will be “1” only when the input and the weight in the positive
array are “1” and “1(LRS)” and the weight in the negative array is “0(HRS).” The
multiply result of “−1” is defined by the opposite case where the input and the
weight are “1” and “−1(LRS)” in the negative array and the weight in the positive
array is “0(HRS).” Similar to Table 5.1, various cases generate IHRS even though
their multiply results must be “0.” The impact of IHRS needs to be carefully handled
to meet the required output precision.

5.3.3 Multi-bit Multiplication

5.3.3.1 Multiplication Using One Cycle and One Column

Multiplication of multi-bit inputs and multi-bit weights can be done in various ways.
Figure 5.2 illustrates three different ways for realizing 2-bit input (IN[1:0]) and 2-
bit weight (WMWL) multiplication. Figure 5.2a, b use one cycle, while Fig. 5.2c

5 ReRAM-Based Processing-in-Memory (PIM) 97

uses two cycles. However, Fig. 5.2a generates the multiplication result using one
column while Fig. 5.2b, c use multiple columns for generating a MAC result. In
Fig. 5.2a, the 2-bit weight for IN[0] (LSB) can be realized by using three cells, one
cell for WL (LSB) and two cells for WM (MSB). However, for IN[1] (MSB), six
cells are necessary since IN[1] is 2 × IN[0] when both are “1s.” Therefore, total
nine ReRAM cells are necessary to realize the multiplication of the 2-bit input and
the 2-bit weight. This will produce the maximum current of 9Icell. Even though
Fig. 5.2a can realize the multi-bit multiplication using one column in principle, it is
challenging to generate large bitline current accurately. One of the main reasons is
that the range of the bitline voltage during read operation is limited by the ReRAM
device characteristics. If the bitline voltage is relatively high, the accessed ReRAM
devices are under weak set or reset conditions, which can partially change the
ReRAM resistance. To avoid this, the bitline voltage should be maintained low so
that no disturbance occurs in the ReRAM resistance. However, when the bitline
voltage is maintained low, the current precision will also be affected, which limits
the overall multiplication accuracy. Besides the low bitline voltage, ReRAM device
variations also make it challenging to generate accurate bitline current proportional
to the MAC result.

5.3.3.2 Parallel-Input Parallel-Weight (PIPW)

To improve the multiplication accuracy, we can use multiple columns, multiple
macros, or multiple cycles assisted with extra circuits for merging the split currents
from multiple columns, multiple macros, or multiple cycles. In Fig. 5.2b, the LSB
and the MSB are stored in Macro[0] and Macro[1], respectively. Two macros store
the same weight, while IN[0] and IN[1] are applied to Macro[0] and Macro[1],
respectively. The MSB of the weight is implemented with two ReRAM devices
using two columns. The maximum bitline current is 2 × Icell from the column
storing MSB of the weight. Similarly, the column storing LSB of the weight
produces maximum current of Icell. The currents from two macros need to be merged
to generate a multiplication result. When merging, the weight difference between the
two macros should be considered. This can be done either by multiplying the current
from the macro storing MSB by 2 or dividing the current from the macro storing
LSB by 2. This architecture is called ‘Parallel-Input-Parallel-Weight (PIPW)’ [18].

5.3.3.3 Serial-Input Parallel-Weight (SIPW)

Another way of improving the multiplication accuracy is to use one macro over
multiple cycles, which is called “Serial-Input-Parallel-Weight (SIPW).” As shown
in Fig. 5.2c, the 2-bit input signals are applied to the macro bit by bit over two cycles.
The maximum bitline current is 3 × Icell in each cycle. To merge the currents over
two cycles, the current from the first cycle needs to be sampled in a capacitor so
that it can be merged with the current generated in the second cycle. In addition, the

98 T. T.-H. Kim et al.

IN[1]

9Icell

Macro[0]WM = Most Significant Bit (MSB) Weight
WL = Least Significant Bit (LSB) Weight

Icell = Cell Current

IN[0]

IN[1]

CLK

INPUT

INPUT

IN[1]

IN[1]

IN[0]

IN[0]

IN[0]

WL

WM

WM

WL

WM

WM

WL

WM

WM

(a)

WM WM WLIN[0]

2Icell Icell

WM WM WLIN[1]

2Icell Icell

Macro[0] Macro[1]

IN[0]

IN[1]

CLK

INPUT

INPUT

(b)

WM WM WLINPUT

2Icell Icell

Macro[0]

IN[0]

CLK

INPUT IN[1]

(c)

Fig. 5.2 Multiplication of multi-bit inputs and weights: (a) one cycle and one macro, (b) one cycle
and multiple macros, and (c) multiple cycles and one macro [19]

5 ReRAM-Based Processing-in-Memory (PIM) 99

Table 5.3 Ways of input weight multiplication

Parallel-input/parallel-weight (PIPW) Serial-input/parallel-weight (SIPW)

Input (m-bit) WL cycle: 1× WL cycle: m×
Weight (n-bit) # of cells: n× # of cells: 1×
Challenges Large BL current and large parasitic capacitance

ratio of the current produced by the MSB to the current produced by LSB needs to be
considered before merging. This architecture is called “Serial-Input-Parallel-Weight
(SIPW).”

The MAC result from PIPW and SIPW can be written as follows:

MAC = IN [0] × [2 × WM + WL] + IN [1] [2 × WM + WL]

Table 5.3 summarizes the comparison of PIPW and SIPW [19]. The number
of ReRAM cells can be reduced when multi-bit ReRAM devices are utilized. The
multi-bit ReRAM devices can employ any multiplication methods in Fig. 5.2.
However, it is challenging to implement multi-bit ReRAM devices accurately.
Therefore, the output precision of the multi-bit ReRAM-based multiplication is still
limited.

5.4 ReRAM PIM Architecture

5.4.1 Introduction

This section will introduce the overview of ReRAM PIM architecture. Convolu-
tional neural networks (CNNs) have demonstrated high accuracy in various artificial
intelligence (AI) tasks. CNNs consist of multiple convolutional layers and fully
connected layers as shown in Fig. 5.3a. Dot product and multiply-and-accumulate
(MAC) operations are the basic operations that are heavily executed in CNNs as
illustrated in Fig. 5.3b. These functions consume excessive energy in Von Neumann
architecture because of the massive data transfer between memory and processing
elements. Processing-in-memory (PIM) can address this issue by merging memory
and processing elements together. However, typical PIMs utilize analog signals to
represent MAC results, which requires careful design, particularly when high output
precision is necessary. As explained in Fig. 5.2, the summation of the multiplication
results can be implemented in various ways depending on the accuracy of the current
in each bitline. The activation function (f) in Fig. 5.3b is generally realized by an
analog-to-digital converter (ADC) for multi-bit precision or a comparator for one-bit
precision.

Typical deep neural networks (DNNs) store weights in separated memories in
non-volatile memories and transfer them to processing elements through multiple

100 T. T.-H. Kim et al.

Input CONV
Layer

CONV
Layer

FC
Layer

A

B

Y

Z
Feature Extraction Classification

X

W

Y

Layer
Input

Layer Input

Layer Input

(a)

W1

∑

x1

x2

xn

W2

Wn

f y

Inputs Weights

Sum Activation Output

y = f (wi xi)
n

i=1
∑

(b)

Fig. 5.3 (a) CNN structure and (b) multiply-and-accumulate operation [22]

memory layers such as DRAM and SRAM. While processing-in-memory can
reduce the amount of weight transfer significantly, weight transfer from memory to
processing elements is still necessary. The weight transfer is particularly critical in
edge computing for smart IoT devices where systems mostly stay in standby mode.
Therefore, it is essential to minimize the standby power of DNNs. ReRAM-based
PIM can minimize the standby power by disabling the supply voltage of the PIM
blocks without losing the weight.

5.4.2 Non-volatile PIM Processor

Figure 5.4a depicts an example of non-volatile PIM-based processor architecture.
Multiple non-volatile PIM (nvPIM) blocks store weights even without power
supply, which allows the removal of external memory for storing weights when
the processor is in standby operation. This can further reduce the data transfer
between memory and processing elements leading to additional reduction in power
and energy consumption. When compared to the conventional Von Neumann
architecture with external non-volatile memory, the nvPIM can improve the energy
efficiency 10–1000 times depending on the DNN architecture, input, weight, and
output precision (Fig. 5.4b).

5 ReRAM-Based Processing-in-Memory (PIM) 101

nvPIM nvPIM nvPIM

P + A P + A P + A

nvPIM nvPIM nvPIM

P + A P + A P + A

Lite-PE
PI

M
-C

on
tr

ol

SR
A

M

D
RA

MMV
N

P + A: Pooling + Activation
(a)

Von
Neumann nvCIM

ygrenE
ecnerefn I

NVM

PE

SRAM

PE

10
 ~

 1
00

0×

(b)

Fig. 5.4 (a) PIM processor architecture and (b) inference energy comparison [11]

5.4.3 ReRAM PIM Architecture

Figure 5.5 shows a typical ReRAM PIM architecture. It consists of a ReRAM
array, a row decoder, a reference generator, analog-to-digital converters (ADCs),
and a write control block. The row decoder controls the input signals applied to
the ReRAM array for PIM operation. Once bitline current is produced by the
multiplication of input signal and weight, ADCs convert the bitline current into
digital output for further processing in neural networks. The reference generator
sets the conversion range of the ADCs, which varies depending on PVT variations.
For better output precision, it is required for the reference generator to adjust

102 T. T.-H. Kim et al.

WL[0]

WL[i]

WL[1]

SL[0]

SL[i]

SL[1]

GND

GND

Reference Generator

redoce
D

enil dro
W

Analog-to-Digital Output

Write Control

lortno
C

Fig. 5.5 Typical ReRAM PIM architecture

the conversion range automatically after tracking the actual variations. In general,
reference voltage levels are generated by using ReRAM replicas for tracking the
systematic variations. However, ReRAM devices show large variations compared
to CMOS transistors. Therefore, the output precision of ReRAM-based PIMs is
still worse than that of CMOS counterparts. Mature ReRAM technology with less
device-to-device mismatches will reduce the precision gap between CMOS-based
PIMs and ReRAM-based PIMs.

5.4.4 ADCs and DACs in ReRAM PIM

Figure 5.6 illustrates the traditional non-volatile ReRAM-based PIM architecture
and a sample power and area breakdown of a ReRAM PIM macro in [14]. The
ReRAM array size is 1152 × 128. Two-bit DACs and 8-bit ADCs are considered in
the breakdown evaluation. Unlike normal ReRAM where only one row is activated
at a time, and sense amplifiers produce binary comparison results, ReRAM PIM
requires digital-to-analog converters (DACs) for input data and analog-to-digital
converters (ADCs) for MAC output. It is noticeable that the power of ADCs and
DACs is dominant compared to that of a ReRAM array. The ADCs also occupy
majority of the area when the required output precision is relatively high (e.g.,
8 bit). For reducing the power consumption of the ADCs, power/energy-efficient

5 ReRAM-Based Processing-in-Memory (PIM) 103

ReRAM Array

DA
Cs

reffuBtupnI

ADCs

Output Buffer

Timing
Control

Traditional Non-volatile PIM Architecture

(a)

ADC(8bit)
61%

DAC(2bit)
24%

ReRAM
15%

Power Consumption

ADC(8bit)
91%

DAC(2bit)
7%

ReRAM
2%

Area Overhead
(b)

Fig. 5.6 (a) Traditional ReRAM-based PIM architecture and (b) sample power and area break-
down [14]

successive-approximation-register (SAR) ADCs are widely employed. Besides, the
number of ADCs can be reduced by reducing the number of MAC results that are
generated at the same time. However, this will increase the number of cycles for
processing the same amount of MAC results, degrading the performance of the
PIMs. Even though various ADC techniques such as zero-skipping and column
ADCs have been developed for better power and area efficiency in the SRAM-based
PIMs [23–25], the power and area overheads of the ADCs are still challenging in
the ReRAM-based PIMs.

104 T. T.-H. Kim et al.

5.5 ReRAM Co-processor

5.5.1 Architecture

A ReRAM crossbar is a compact solution for realizing vector-matrix multiplication
by using the conductance values of the crossbar array storing the weights. By
carefully controlling the voltage input for the crossbar rows, each column can
produce current generated by the vector-matrix multiplication in the analog domain.
It is well known that the relationship between the applied voltage and the induced
current is not linear in the ReRAM crossbar. Therefore, pulse-width modulation is
more commonly employed for applying the input signal to the ReRAM crossbar.
Figure 5.7 illustrates the architecture of a fully integrated reprogrammable crossbar
ReRAM coprocessor [26]. It consists of a RIC CPU, multiple SRAMs, a memory
controller, a ReRAM PIM macro with mixed-signal interface. The CPU controls
the ReRAM PIM macro and the mixed-signal interface through the shared bus.
The ADCs and the DACs are controlled through the global configuration register
depending on the operation mode of the coprocessor.

5.5.2 Mixed-Signal Interface

The block diagram of the mixed-signal interface of the ReRAM coprocessor is
illustrated in Fig. 5.8. The ADC/DAC enables control block, and the 3b DAC select
block determines the operations modes of the ADCs and the DACs. For example,
during programming operation, the DACs for rows and the DACs for columns

ReRAM Crossbar

AD
Cs

 &
 D

A
Cs

In
pu

t B
uf

fe
r

ADCs & DACs

Output Buffer

Global
Config Reg.

&
Timing
Control

RISC CPU

SRAM
(Instruction

& Data
Memory)

Ping-pong
Memory

Memory
Control 32-bit Bus

Fig. 5.7 Architecture of ReRAM coprocessor [26]

5 ReRAM-Based Processing-in-Memory (PIM) 105

ADC

DAC

DAC

DAC

ADC/DAC En
Control

Select Read

Write_L

Write_H

To
 C

ro
ss

ba
r P

ad

CA
D

b3 Se
le

ct

tuptu
O

CD
A

t upnI
CA

D
VDD

Fig. 5.8 Mixed-signal interface of ReRAM coprocessor [26]

generate high-voltage pulses to the accessed ReRAM cells for programming. During
PIM operation, the DACs for read apply input pulses to the crossbar, and each
column generates bitline current or voltage as a vector-matrix multiplication result.
The ADCs connected to the selected columns convert the analog signal in each
column into digital codes for further processing. The unused ADCs and DACs are
disabled to reduce unnecessary power consumption.

5.5.3 ADCs and DACs Operation

Figure 5.9 depicts the operations of the ADCs and DACs during the programming
and PIM modes of the ReRAM PIM coprocessor [26]. During programming (Fig.
5.9a), the DACs in the selected row and the selected column generate a train of
differential pulses so that the selected ReRAM device undergoes either positive
or negative programming voltage depending on the programming data. The DAC
output voltage levels and the number of pulses are programmed into registers for
flexible control. The DACs in the unselected rows and columns generate common-
mode voltage (e.g., 1 V in [26]) to avoid unwanted programming. The driving
strength of the DACs should be designed carefully so that the sneak currents flowing
from the selected row to the unselected columns and from the unselected rows to
the selected column do not affect the DAC outputs for the selected row and the
selected column significantly. Since the worst-case scenarios need to be considered,
the above requirement will increase the power and the area of the DACs. Figure
5.9b shows the ADCs and the DACs in the PIM mode where the DACs for rows are
selectively activated relying on the applied input signal, and the ADCs for columns
convert the conductance of each column into multi-bit digital outputs. The DACs
for columns are disabled by the mixed-signal interface as shown in Fig. 5.8. The

106 T. T.-H. Kim et al.

Fig. 5.9 Operation of ADC
and DAC in ReRAM PIM:
(a) programming and (b) PIM
operation [26]

D1=0

D1=2

D2=0

D3=0

D
0=

0

D
1=

2

D
2=

0

D
3=

0

DAC

DAC

DAC

DAC

D
AC

D
AC

D
AC

D
AC

1V

1V

1V

Bitline
Voltage

1V 1V 1V

1V

(a)

D1=2

D1=1

D2=1

D3=3

A
0

A
1

A
2

A
3

DAC

DAC

DAC

DAC

A
DC

A
DC

A
DC

A
DC

Bitline
Voltage

1.2V 1.2V 1.2V

1.2
1.8

1.2V

(b)

number of pulses going to each selected row is controlled by the controller (i.e.,
3b DAC Select in Fig. 5.8). The DACs for unselected rows generate 1.2 V as the
common-mode voltage. The DACs use the pulse amplitude of 0.6 V that can also be
adjusted depending on the ReRAM characteristics and the resolution of the ADCs.
The column outputs excited with 0.6 V pulses are digitized by the ADCs in parallel.

5 ReRAM-Based Processing-in-Memory (PIM) 107

Weights

D
riv

er
s

A
DC

/
N

eu
ro

n

Drivers
ADC/

Neuron Backpropagation

Inference

Weights

D
riv

er
s

Drivers
ADC/

Neuron

Implementation1 Implementation2

Fig. 5.10 Transposable ReRAM PIM macro [27]

5.6 Transposable ReRAM for Inference and Training

Transposable PIM macros with forward and backward propagation are necessary
neural networks for inference and training [27]. In the inference mode, the forward
operation will be performed. In the training mode, weights will be updated through
backward propagation. Both propagation cases execute the convolution of weights
and inputs. However, the weights matrix will be transposed in backward propagation
compared with the feedforward one. Thus, the transpose weight matrix is necessary
for computation. To realize transposable PIM macros, the memory array storing
weights needs to be accessed vertically and horizontally. Figure 5.10 depicts two
different architectures of the transposable PIM macros [27]. The first implemen-
tation includes dedicated drivers, ADCs, and neurons for forward propagation and
backward propagation, respectively. However, the ADCs and the neurons can be
used only one direction at a time, which facilitates sharing by the two propagation
directions. The second implementation shows that the ADCs and the neurons are
shared by the inference propagation and the backpropagation. This reduces the
energy, latency, and area overheads coming from the ADCs and the neurons.

5.7 Bitline Sensing for MAC Accuracy Improvement

5.7.1 Variations in Bitline Current

ReRAM PIMs face various challenges such as large bitline current, large offset in
sensing, overlap in bitline current for different MAC values, etc. Fig. 5.11a shows
a ReRAM PIM macro activating multiple wordlines simultaneously. The bitline

108 T. T.-H. Kim et al.

(a)

ytilibaborP

IBL

1 2 3 4 5 6 7 8 9

MAC Values

1L0H

1L8H

2L0H

2L7H

3L0H

3L6H

4L0H

4L5H

5L0H

5L4H

6L0H

6L3H

7L0H

7L2H

8L0H

8L1H

9L0H

9L0H

(b)

ReRAM Array

revirD
L

W
edo

mlau
D

YMUX
ADCs

BL

WL

Fig. 5.11 (a) ReRAM PIM macro for parallel computation and (b) distribution of bitline current
over multiple MAC values [11]

current distribution of each MAC value can be estimated depending on the ReRAM
device status. Figure 5.11b illustrates an example of the bitline current distribution
when assuming that the maximum MAC value from each column is 9 [11]. Here,
the smallest bitline current for the MAC value of “1” is “1L0H” (one ILRS and no
IHRS), which can happen when only one wordline is turned on for MAC operation.
The maximum bitline current for the same MAC value is “1L8H” (one ILRS and
eight IHRS) where 9 wordlines are turned on and 8 ReRAM devices are in the
HRS state. The selected ReRAM devices in the HRS state will generate IHRS even
though the computed MAC value has no difference, which needs to be considered
when sensing or digitizing the accumulated bitline current. Sensing margins can

5 ReRAM-Based Processing-in-Memory (PIM) 109

be defined by the current difference between two neighboring current distributions.
For example, the sensing margin between the MAC value of “1” and that of “2” can
be written as “2L0H” − “1L8H.” Similarly, the sensing margin between the MAC
value of “7” and that of “8” is “8L0H” − “7L2H.” Ideally, the current difference
between the MAC value of “7” and that of “8” (i.e. ILRS – 2IHRS) is larger than
the current difference between the MAC value of “1” and that of “2” (i.e., ILRS
− 8IHRS). However, after considering the variations in ILRS and IHRS, it is found
that the current for higher MAC values shows larger variations, which degrades the
sensing margins as depicted in Fig. 5.11b.

5.7.2 Input-Aware Dynamic Reference Generation

To tackle the sensing margin degradation issue caused by the ReRAM current
variations, input-aware dynamic reference generation scheme is proposed in [11].
This scheme considers the reference current dependency on the input signal.
Therefore, instead of using fixed reference currents, the reference currents are
dynamically generated by input-aware replica rows. The replica rows are controlled
by the number of wordlines for the input signal, which is counted by a counter.
Figure 5.12 illustrates the distributions of the bitline current over various input
values. It is evident that the optimal reference current for sensing MAC values reply
on the number of wordlines (NWL). The input-aware reference current generation

Probability

ICR

1 2 3 4 5 6 7

MAC Values
0

IREF_FIX[7:1]

IREF_IA[7:1]

IREF_FIX[7] IREF_FIX[7]

NWL=1

NWL=2

NWL=7

NWL=9

Fig. 5.12 Input-aware dynamic reference generation scheme [11]

110 T. T.-H. Kim et al.

SINWP

Comparator + PN-ISUB

SINWP

DSWCT DSWCT

Positive Weights Negative Weights

Input

TMCSA

DOUT[2:0]DOUTSIGN

Fig. 5.13 PIM macro architecture of SINWP [18]

is more critical for higher MAC values where the current difference between MAC
values is smaller because of the variations in the bitline current. It is reported that
the input-aware dynamic reference generation improves the error rate by 50 times
compared to the conventional fixed reference generation scheme.

5.7.3 Weighted Current Generation

5.7.3.1 PIM Macro Architecture

Generally, multi-bit weights are stored in multiple ReRAM cells to generate
weighted currents. This increases area overheads and bitline current. Since the
bitline current shows significant variations because of the ReRAM resistance
variations, using large bitline current for MAC operation limits the output precision.
To address the area and the bitline current issues, a research work proposing
serial-input non-weighted product (SINWP) and down-scaling weighted current
translation (DSWCT) is reported in [18]. Figure 5.13 shows the overall array
architecture of the PIM macro in [18]. The macro consists of two ReRAM arrays for
positive weights and negative weights, respectively. The current from each array will
be weighted through the DSWCT block and will be merged by the positive/negative
current subtraction (PN-ISUB) block.

5 ReRAM-Based Processing-in-Memory (PIM) 111

WL[0]

WL[i]

WL[1]

B
L[

0]

B
L[

1]

SL
[0

]

SL
[1

]

Positive-Weight Group

B
L[

n-
1]

B
L[

n]

SL
[n

-1
]

SL
[n

]

Negative-Weight Group

IN[0] IN[1] IBL_MSB[0] IBL_LSB[0] IBL_MSB[n] IBL_LSB[n]

Fig. 5.14 ReRAM PIM macro operation for SINWP [18]

Table 5.4 Realization of positive and negative weights in SINWP

Positive weight group Negative weight group
MCM MCL Weight (W) MCM MCL Weight (W)

LRS (+2) LRS (+1) +3 HRS (0) HRS (0) 0
LRS (+2) HRS (0) +2 HRS (0) LRS (−1) −1
HRS (0) LRS (+1) +1 LRS (−2) HRS (0) −2
HRS (0) HRS (0) 0 LRS (−2) LRS (−1) −3

5.7.3.2 Serial-Input Non-weighted Product (SINWP)

Figure 5.14 shows the schematic of the ReRAM array for SINWP. The 2-bit input
is applied to the array at different timings. LSB is applied first, while MSB is
applied later. The array stores 2-bit weights using two ReRAM bit cells that are
implemented in two columns. The bitline currents from two columns are non-
weighted. Therefore, they need to be further processed to generate final weighted
current for digitization. The array for the negative weights also generates bitline
currents in the same way as the array for the positive weights.

Table 5.4 explains the realization of the positive and negative weights in SINWP.
Note that one resistance combination of two ReRAM bit cells indicates two weight
values with the same absolute value. The combination of (MCM = LRS, MCL =
LRS) is used for the weights of “3” and “−3” since it produces the largest bitline
current. Similarly, the weights of “1” and “−1” are realized by the combination of
(MCM = HRS, MCL = HRS) for generating the smallest bitline current.

112 T. T.-H. Kim et al.

5.7.3.3 Down-scaling Weighted Current Translator (DSWCT)

Figure 5.15 shows how two bitline currents from each weight group are weighted
by a circuit called down-scaling weighted current translator (DSWCT). As shown
in Fig. 5.15a, the bitline current generated by the MSB weight (IMSB) is downscaled
by 2, while the bitline current generated by the LSB weight (ILSB) is downscaled
by 4. The schematic of DSWCT is presented in Fig. 5.15b. The weighted current
is generated by N0, N1, P0, P1, P2, and P3. The bitline current generated by MSB
weight (IDL_MSB[0]) flows through P0 and N0 forming analog voltage at the gate of
P0. The gate voltage of P0 is shared with P1 whose size is half of P0. Therefore
the current flowing through P1 is half of IDL_MSB[0]. The bitline current generated
by LSB weight (IDL_LSB[0]) is processed in a similar way except that the size of
P3 is a quarter of P2. Therefore, only a quarter of IDL_LSB[0] flows through P3.
As shown in Fig. 5.14, IDL_MSB[0] and IDL_LSB[0] are generated when IN[0] is

Input X
Weight-MSB

Input X
Weight-LSB

IMSB × 1/2 ILSB × 1/4

IMSB × ½ + ILSB × ¼
IMSB = MSB current summation
ILSB = LSB current summation

(a)

IDL_MSB[0]

VBiasM

IDLC_MSB[0]

×4×2

IWDL_MSB[0]

IDL_LSB[0]

VBiasL

IDLC_LSB[0]

×4 ×1

IWDL_LSB[0]

Positive-Weight Block

P0P1 N0

N2 N3

N1 P3P2

N4 N6 N5N7
×1/2×1/4 ×1/4×1/2

IDL_P

(b)

Fig. 5.15 (a) Operation principle of DSWCT and (b) circuit implementation [18]

5 ReRAM-Based Processing-in-Memory (PIM) 113

tnerruC

w/o Proposed SINWP+
DSWCT

SINWP+
DSWCT+
PN-ISUB

Read path max current range

3.6x 3.83x

9IHR

Fig. 5.16 Read path current reduction by SINWP+DSWCT+PN-ISUB [18]

applied to the ReRAM array. These two current components need to be merged
with the current generated by IN[1]. Therefore, IWDL_MSB[0] and IWDL_LSB[0] are
stored in the capacitors after converting them into voltage at the gate node of N2
and N5. After this, IN[1] is applied to the array and generates bitline currents,
IDL_MSB[1] and IDL_LSB[1]. Note that these currents are not weighted when compared
with IDL_MSB[0] and IDL_LSB[0]. N3, N4, N6, and N7 merge IDL_MSB[0], IDL_LSB[0],
IDL_MSB[1], and IDL_LSB[1] after considering their weights. Since the weight of IN[1]
is 2× of IN[0], IWDL_MSB[0] and IWDL_LSB[0] are downscaled by 4 and IDL_MSB[1]
and IDL_LSB[1] are downscaled by 2 for proper merging. This is realized by selecting
the device size of N3 and N6 a quarter of N2 and N5. Consequently, the merged
current (IDL_P) can be written as follows.

IDL_P = 1

4

[
IWDL_LSB[0] + IWDL_MSB[0]

] + 1

2

[
IWDL_LSB[1] + IWDL_MSB[1]

]

= 1

4

[
IDL_LSB[0]

4
+ IDL_MSB[0]

2

]
+ 1

2

[
IDL_LSB[1]

4
+ IDL_MSB[1]

2

]

The merged current from the negative weight group (IDL_N) is also generated by
the same way as IDL_P. Finally, “IDL_P − IDL_N” is computed by PN-ISUB whose
output is digitized. Figure 5.16 shows the read path current reduction achieved by
SINWP, DSWCT, and PN-ISUB. The improvement of 3.83× is obtained.

114 T. T.-H. Kim et al.

5.8 Versatile ReRAM-Based PIM Functions

5.8.1 Versatile PIM Architecture

In data-intensive applications such as machine learning and neural networks,
Processing-in-Memory (PIM) is an attractive way of reducing energy and latency.
Even though Multiply-and-Accumulate (MAC) is one of the most commonly
executed functions in neural networks, modern SoCs require other data-centric
functions such as logic functions, addition, and other memory operations as
well. For example, the ReRAM macros in [28–30] support both ternary content
addressable memory (TCAM) operation as well as regular memory operation.
Various ReRAM-based cell structures such as 4T2R and 2T2R are reported to
support various PIM operation modes [15, 16]. Figure 5.17 illustrates an array
architecture of 2T2R ReRAM for versatile functions [15]. It consists of an array,
various decoders, drivers, reconfigurable sense amplifiers (SAs), and PIM logic.
This ReRAM macro supports various functions such as TCAM, in-memory dot
product, logic-in-memory, and normal ReRAM operation. This will be useful in
applications where multiple memory functions are required without using dedicated
memory for each function.

TCAM_EN

TCAM_Write_ADDR

2_R
D

DA
1_RDDA

256 x 128
Array

cigoL
RL

W/LL
W

WLL[0]

2T2R

4:1 Column MUX

TCAM Decoder & Write Drivers

WLR[0]

WLL[1]

WLR[1]

TC
AM

 D
riv

er

2
s re doc eD

woR WLL[255]

WLR[255]

Reconfigurable SAs & PIM Logic
TCAM_EN

OP_Code TCAM_Data

Fig. 5.17 2T2R ReRAM for versatile PIM functions [15]

5 ReRAM-Based Processing-in-Memory (PIM) 115

5.8.2 2T2R ReRAM Bit Cell for Versatile Functions

5.8.2.1 Basic Memory Operation

Figure 5.18 shows the 2T2R bit cell and its normal ReRAM operation employed
in Fig. 5.17. It comprises two 1T1R ReRAM bit cells using a common source line
(SL) scheme [14, 31] and stores differential data. For read operation (Fig. 5.18b),
both WLL and WLR are enabled so that SL and SLB generate differential voltage
that can be sensed by a sense amplifier. The 2T2R bit cell employs a two-cycle
write operation. During the first cycle, BL is set to the set voltage (VSET), and SL
and SLB are grounded. This will set the ReRAM devices to LRS. At the second
cycle, one of SL and SLB is set to the set voltage (VSET) while the unselected
SL or SLB, and BL are grounded. This will make the selected ReRAM device
transit to HRS. Therefore, differential data can be written into the 2T2R bit cell
over two cycles. This may not be preferred in applications where the frequent write
operation is executed. However, in PIMs, read operation in various modes is much
more frequent. Therefore, it is acceptable to sacrifice one cycle for the differential
data writing.

WLL

WLR

SL SLBBL

Q QB

WLL

SL SLB

WLR

SA+ -

Q QB

out out_b

WLL WLR

Q QB

VWRITEVWRITE

Cycle 1: Erase
(Set Q and QB)

WLR

SL

WLL

QBQ

VSET

VWRITE VWRITE

Cycle 2: Reset QB

(a) (b)

(c)

LRS LRS

VSET BL

HRS LRS

Fig. 5.18 2T2R ReRAM bitcell: (a) schematic, (b) read, and (c) write [15]

116 T. T.-H. Kim et al.

SL[1]

HRS

0

1

hcraeS
(0

, 1
)

SL[2] SLB[2]

match[2] = 0

SLB[1]

HRS

BL[1] BL[2]

HRS LRS

HRS
LRS

HRS LRS

M
ism

at
ch

SA+-VREF

match[1] = 1

SA+-

Fig. 5.19 2T2R ReRAM operation in the TCAM mode [15]

5.8.2.2 TCAM Operation

Figure 5.19 explains the 2T2R ReRAM operation in the TCAM mode. Search data
are loaded into WLL (e.g., (0,1) in Fig. 5.18), and the bitlines (BL[i]) and the source
lines (SL[i] and SLB[i]) are precharged to VDD and grounded, respectively. When
there is a mismatch, the corresponding bitline is discharged quickly through the
mismatched cell and the sense amplifier in the corresponding bitline will produce
“0” as a result. If the number of mismatched cells increases, the discharging speed
will be higher. The overall search operation result will be generated through the
sense amplifiers.

5.8.2.3 Logic-in-Memory Operation

The 2T2R ReRAM in Fig. 5.17 also supports logic-in-memory operation as shown
in Fig. 5.20. AND/NAND operations are executed by enabling two WLLs in two
rows with grounded BLs. Similarly, OR/NOR operations are performed by enabling
two WLRs in two rows with grounded BLs. XOR operation (Fig. 5.20a) can be
done by combining the results of the AND and NOR operations. XNOR operation
(Fig. 5.20b) can also be realized in a similar way with grounded SLs. Here, BLs are
connected to the sense amplifiers through reconfiguration. Figure 5.20c shows the
logic functions required for a full adder (FA) and a full subtractor (FS). Note that all
the logic functions can be achieved by the circuit configurations explained in Fig.
5.20a, b. However, FA requires two cycles since the sense amplifier output from Fig.
5.20a needs to be latched before using the configuration of Fig. 5.20b.

5 ReRAM-Based Processing-in-Memory (PIM) 117

X Y+

SL SLBBL

X
X

VREF

WLL[0]

WLR[0]

WLL[1]

WLR[1]

XY

YY

SL SLBBL
WLL[0]

WLR[0]

WLL[1]

WLR[1]

X+Y

X Y+

SA+ -

XY
SA+-

X+Y
SA+ - SA+-

X
X

YY

SN = (XNYN NOR XN+YN) XOR CN-1

CN = ((XNYN NOR XN+YN) AND CN-1) OR (XNYN)
Full Adder
Equa�on

DN = (XNYN NOR XNYN) XOR BN-1

BN = ((XNYN NOR XNYN) AND BN-1) OR (XNYN)
Full Subtractor

Equa�on

XY X+Y X+Y XY

(a) (b)

VREF

(c)

Fig. 5.20 Logic-in-memory operation: (a) grounded SL/SLB and BL, (b) precharged BL and
grounded SL/SLB, and (c) full adder and full subtractor equations [15]

5.8.2.4 Dot Product Operation

In binary neural networks (BNNs), doc product operation is realized by simple
XNOR-popcount operation. Various research works for implementing in-memory
dot product (IM-DP) operation have been reported [11, 32]. Figure 5.21 illustrates
the IM-DP operation proposed in Fig. 5.17. The ReRAM array stores weights using
a 2T2R bit cell, and the input activation signal (F) is applied to the pass gates for
controlling the connectivity of SLs for the sense amplifiers. When F = “1,” SL
and SLB are connected to the positive input and the negative input, respectively.
When F = “0,” SL and SLB are connected to the opposite sense amplifier inputs.
When one row is enabled by turning on the corresponding WLL and WLR, the sense
amplifier outputs will be the bitwise XOR/XNOR of the selected weight (W) and the
input activation signal (F). The sense amplifier outputs go through a Wallace tree
adder to execute the popcount operation. Since the popcount operation is realized in
a fully digital manner, no analog-to-digital converters (ADCs) are necessary, which

118 T. T.-H. Kim et al.

SL SLBBL

W
WLL

WLR

F F

Weight

Input
Ac�va�on

Differen�al
Sense

Cycle 1

Cycle 2

Cycle N

2T2R2T2R2T2R

2T2R2T2R2T2R

2T2R2T2R2T2R

IAs Pass Transistors & SAs

Wallace Tree Adder

output

W

W F+ W F+

XNOR/XOR

F

SA+ -

(a) (b)

Fig. 5.21 In-memory dot product for binary neural networks: (a) sensing scheme and (b)
simplified architecture [15]

Table 5.5 Comparison with recent ReRAM and R-CIM works

This work [15] [30] [31]

Operations NVM, TCAM, LiM, IM-DP NVM, IM-DP TCAM NVM
Technology 40 nm 130 nm 130 nm 40 nm
On/Off ratio ~100 N.A. > 200 N.A.
VREAD (V) TCAM 0.4 – 0.6 –

LiM 0.15 – – –
IM-DP 0.1 0.1 – –
NVM read 0.1 0.1 – 0.18–0.3

reduces power and area overheads significantly. Table 5.5 compares various ReRAM
supporting various PIM functions without MAC operation.

5.9 Summary

This chapter presents an overview of ReRAM PIMs. Non-volatile ReRAM PIMs
are attractive for edge devices whose power is from a battery or energy har-
vesting devices. Even though many techniques developed for SRAM-based PIMs
and DRAM-based PIMs can be considered for ReRAM PIMs, ReRAM device
characteristics incur various design challenges. One of the most critical challenges
in the ReRAM PIM design is to tackle large variations in the ReRAM device
characteristics. It is also a limiting factor that the bitline voltage and the bitline
current for PIM operation should be lowered as much as possible to minimize

5 ReRAM-Based Processing-in-Memory (PIM) 119

the nonlinearity. This chapter introduces various design techniques, including cell-
level techniques, ReRAM PIM architectures, and CMOS circuit techniques for
addressing the aforementioned challenges. ReRAM PIMs will be more impactful
when the ReRAM fabrication technology becomes more mature and the key
ReRAM device parameters are improved.

References

1. K. Ando et al., BRein memory: A single-chip binary/ternary reconfigurable in-memory deep
neural network accelerator achieving 1.4 TOPS at 0.6 W. IEEE J. Solid State Circuits 53(4),
983–994 (2018)

2. M. Kang et al., A multi-functional in-memory inference processor using a standard 6T SRAM
array. IEEE J. Solid State Circuits 53(2), 642–655 (2018)

3. A. Biswas et al., CONV-SRAM: An energy-efficient SRAM with in-memory dot-product
computation for low-power convolutional neural networks. IEEE J. Solid State Circuits 54(1),
217–230 (2019)

4. H. Valavi et al., A 64-tile 2.4-Mb in-memory-computing CNN accelerator employing charge-
domain compute. IEEE J. Solid State Circuits 54(6), 1789–1799 (2019)

5. S. Yin et al., XNOR-SRAM: In-memory computing SRAM macro for binary/ternary deep
neural networks. IEEE J. Solid State Circuits 55(6), 1733–1743 (2020)

6. S.K. Gonugondla et al., A 42pJ/decision 3.12TOPS/W robust in-memory machine learning
classifier with on-chip training, in Proc. IEEE int. solid-state circuits conf. (ISSCC), (IEEE,
Piscataway, 2018), pp. 490–492

7. J. Su et al., A 28nm 64Kb inference-training two-way transpose multibit 6T SRAM compute-
in-memory macro for AI edge chips, in Proc. IEEE int. solid-state circuits conf. (ISSCC),
(IEEE, Piscataway, 2020), pp. 240–242

8. X. Si et al., A 28nm 65Kb 6T SRAM computing-in-memory macro with 8b MAC operation for
AI edge chips, in Proc. IEEE int. solid-state circuits conf. (ISSCC), (IEEE, Piscataway, 2020),
pp. 246–248

9. W. Khwa et al., A 65nm 4Kb algorithm-dependent computing-in-memory SRAM unit-macro
with 2.3ns and 55.8TOPS/W fully parallel product-sum operation for binary DNN edge
processors, in Proc. IEEE int. solid-state circuits conf. (ISSCC), (IEEE, Piscataway, 2018),
pp. 496–498

10. X. Si et al., A twin-8T SRAM computation-in-memory macro for multiple-bit CNN-based
machine learning, in Proc. IEEE int. solid-state circuits conf. (ISSCC), (IEEE, Piscataway,
2019), pp. 396–398

11. W.-H. Chen et al., A 65nm 1Mb non-volatile computing-in-memory ReRAM macro with sub-
16ns multiply-and-accumulate for binary DNN AI edge processors, in Proc. IEEE int. solid-
state circuits conf. (ISSCC), (IEEE, Piscataway, 2018), pp. 494–496

12. C. Xue et al., Embedded 1-Mb ReRAM-based computing-in-memory macro with multibit
input and weight for CNN-based AI edge processors. IEEE J. Solid State Circuits 55, 203–
215 (2020)

13. C. Xue et al., A 22nm 2Mb ReRAM compute-in-memory macro with 121-28TOPS/W for
multibit MAC computing for tiny AI edge devices, in Proc. IEEE int. solid-state circuits conf.
(ISSCC), (IEEE, Piscataway, 2020), pp. 244–246

14. Q. Liu et al., A fully integrated analog ReRAM based 78.4TOPS/W compute-in-memory chip
with fully parallel MAC computing, in Proc. IEEE int. solid-state circuits conf. (ISSCC),
(IEEE, Piscataway, 2020), pp. 500–502

15. Y. Chen et al., Reconfigurable 2T2R ReRAM architecture for versatile data storage and
computing in-memory. IEEE Trans. VLSI Syst. 28, 2636–2649 (2020)

120 T. T.-H. Kim et al.

16. Y. Chen et al., A reconfigurable 4T2R ReRAM computing in-memory macro for efficient edge
applications. IEEE Open J. Circuits Syst. 2, 210–222 (2021)

17. C.-X. Xue et al., A 22nm 4Mb 8b-precision ReRAM computing-in-memory macro with 11.91
to 195.7TOPS/W for tiny AI edge devices, in Proc. IEEE int. solid- state circuits conf. (ISSCC),
(IEEE, Piscataway, 2021), pp. 245–247

18. C.-X. Xue et al., A 1Mb multibit ReRAM computing-in-memory macro with 14.6ns parallel
MAC computing time for CNN based AI edge processors, in Proc. IEEE int. solid-state circuits
conf. (ISSCC), (IEEE, Piscataway, 2019), pp. 388–390

19. W. Lee et al., Multilevel resistive-change memory operation of Al-doped ZnO thin-film
transistor. IEEE Electron. Dev. Lett. 37(8), 1014–1017 (2016)

20. R. Yasuhara et al., Reliability issues in analog ReRAM based neural-network processor, in
IEEE international reliability physics symposium (IRPS), (IEEE, Piscataway, 2019), pp. 1–5

21. R. Mochida et al., A 4M synapses integrated analog ReRAM based 66.5 TOPS/W neural-
network processor with cell current controlled writing and flexible network architecture. IEEE
Symp. VLSI Technol. 2018, 175–176 (2018)

22. A. Biswas et al., Conv-RAM: An energy-efficient SRAM with embedded convolution compu-
tation for low-power CNN-based machine learning applications, in Proc. IEEE int. solid- state
circuits conf. (ISSCC), (IEEE, Piscataway, 2018), pp. 488–490

23. C. Yu et al., A 16K current-based 8T SRAM compute-in-memory macro with decoupled
read/write and 1-5bit column ADC, in Proc. IEEE custom integrated circuits conference
(CICC), (2020)

24. C. Yu et al., A zero-skipping reconfigurable SRAM in-memory computing macro with binary-
searching ADC, in Proc. IEEE Eur. solid state circuits conf. (ESSCIRC), (2021)

25. C. Yu et al., A logic-compatible eDRAM compute-in-memory with embedded ADCs for
processing neural networks. IEEE Trans. Circuits Syst. I Regul. Pap. 68(2), 667–679 (2021)

26. J.M. Correll et al., A fully integrated reprogrammable CMOS-RRAM compute-in-memory
coprocessor for neuromorphic applications. IEEE J. Explor. Solid-State Computat. Devices
Circuits 6(1), 36–44 (2020)

27. W. Wan et al., A 74 TMACS/W CMOS-RRAM neurosynaptic core with dynamically
reconfigurable dataflow and in-situ transposable weights for probabilistic graphical models,
in Proc. IEEE intl. solid-state circuits conference (ISSCC), (2020), pp. 498–499

28. L. Zheng et al., Memristors-based ternary content addressable memory (mTCAM), in IEEE
int. symp. on circuits and systems (ISCAS), (2014), pp. 2253–2256

29. M. Chang et al., Designs of emerging memory based non-volatile TCAM for Internet-of-
Things (IoT) and big-data processing: A 5T2R universal cell, in IEEE int. symp. on circuits
and systems (ISCAS), (IEEE, Piscataway, 2016), pp. 1142–1145

30. D. Ly et al., In-depth characterization of resistive memory-based ternary content addressable
memories, in IEEE int. electron devices meeting (IEDM), (IEEE, Piscataway, 2018), pp.
20.3.1–20.3.4

31. C. Chou et al., An N40 256K×44 embedded RRAM macro with SL-precharge SA and low-
voltage current limiter to improve read and write performance, in Proc. IEEE int. solid-state
circuits conf. (ISSCC), (IEEE, Piscataway, 2018), pp. 478–479

32. M. Bocquet et al., In-memory and error-immune differential RRAM implementation of
binarized deep neural networks, in IEEE intl. electron devices meeting (IEDM), (IEEE,
Piscataway, 2018), pp. 20.6.1–20.6.4

Chapter 6
PIM for ML Training

Jaehoon Heo and Joo-Young Kim

6.1 Introduction

Machine learning (ML) inference is the evaluation process of a trained model for a
given input. To this end, it reads the input data and sends it through the various
ML layers, such as fully connected, convolutional, and recurrent layers, which
involve data-intensive computations with model parameters to get the final result.
It is a read-only and unidirectional process. On the other hand, ML training is the
process of finding the network’s weight and bias parameters that can perform a target
task. Mathematically speaking, it defines the cost function and updates the model
parameters to minimize the cost for the given training data set consisting of many
pairs of inputs and outputs. It involves numerous parameter updates with iterative
forward and backward propagation.

With algorithmic complexity and limited usage, there are not many commercial
products available or under development for ML training, except in the cloud
datacenter domain. This is why GPU is still the most dominant platform in
training, unlike in inference where many accelerators challenge to replace GPU.
As discussed in the previous chapters, processing-in-memory (PIM) architecture
can improve both performance and energy efficiency in various ML workloads by
addressing the data movement bottleneck between the compute and memory device.
Since the training process generates more intermediate data and requires higher
bandwidth than the inference, PIM has greater opportunities in training, despite its
computational complexity. In this chapter, we will review the training computations
and look into the latest PIM works designed for ML training.

J. Heo · J.-Y. Kim (�)
School of Electrical Engineering (E3-2), KAIST, Daejeon, South Korea
e-mail: kd01050@kaist.ac.kr; jooyoung1203@kaist.ac.kr

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J.-Y. Kim et al. (eds.), Processing-in-Memory for AI,
https://doi.org/10.1007/978-3-030-98781-7_6

121

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98781-7_6&domain=pdf
mailto:kd01050@kaist.ac.kr
mailto:jooyoung1203@kaist.ac.kr
https://doi.org/10.1007/978-3-030-98781-7_6

122 J. Heo and J.-Y. Kim

6.2 Training Computations

Unlike the inference has a data-intensive but simple computational flow, the training
process has a complex flow with many iterations. The goal of training is to find all
the weight and bias parameters that minimize the cost function written in Eq. 6.1.
It represents the overall distance between the predicted outputs yo and the training
sample outputs yt .

argmin

(
C = 1

2

∥∥yo − yt

∥∥2
)

(6.1)

Once the target model’s weight and bias parameters are initialized, the training
iterates the following steps for each training sample to minimize the cost function.
First, it performs feed-forward propagation (FP). It is the same as the inference
process; an input vector goes through the network for evaluation. It then computes
the error at the output by subtracting the evaluation result and the training sample.
Second, it propagates the error backward from the output to the input (backward
propagation, BP). Third, it calculates the gradient for each layer to reduce the overall
difference between the predicted outputs and the ground truths (i.e., training set).
Lastly, it updates the weight and bias parameters. The above process is repeated
until the network is converged, which means the magnitude of an update gets small
enough under a threshold.

We use the gradient descent method for optimization, which iteratively moves
in the steepest descent direction defined by the gradient’s negative to minimize the
cost function. With a stochastic process using mini-batching, stochastic gradient
descent (SGD) is the de facto standard in training as it enables fast convergence.
Equation 6.2 shows how the weights are updated in the SGD.

W+ = W − η · ∂E

∂W
(6.2)

6.2.1 Feed-Forward Propagation

The input data is propagated through multiple layers in FP, executing multiply-and-
accumulate (MAC) operations between the input and weight data for each layer,
as discussed in Chap. 1. Eqs. 6.3 and 6.4 show the operation of the fully connected
layer and convolutional layer, respectively, where function f is non-linear activation
function. For convolutional layers, down-sampling pooling functions can be placed
between layers.

{
Y l = WlHl−1 + b

Zl = f (Y l)
(6.3)

6 PIM for ML Training 123

{
Y l = Wl ∗ Hl−1 + b

Zl = f (Y l)
(6.4)

symbol ∗ : convolution

Once FP is done, the final layer’s output is the predicted result and is used for
calculating the error against a labeled sample of the training set. Although the
computation itself is the same as the inference, FP of the training process needs to
keep the intermediate results because they will be re-used in the later steps. For each
layer, it needs to store both activation and activation gradient, the gradient of the
layer’s activation function with respect to the layer’s activation, as they are necessary
for backward propagation and gradient calculation (GC). For the convolution layers
with pooling, selected positions out of the pooling window are needed for error
propagation during BP.

6.2.2 Backward Propagation

In BP, the calculated error δ is propagated layer by layer from the output to
the input side. Based on the chain rule, we calculate the first-order derivative of
the cost function with regard to each parameter to compute the propagated error
and gradient matrix for each layer. Equation 6.5 shows the equation for fully
connected layers, which multiplies the transposed weight matrix to the propagated
error from the previous layer and applies the Hadamard product (i.e., element-
wise multiplication) with the activation gradient. Likewise, Eq. 6.6 shows the
equation for convolutional layers, which applies deconvolution instead of transposed
multiplication. Deconvolution is same as the convolution with 180◦ rotated weights
after zero padding.

⎧
⎨

⎩
δL = (Y − Yt) � f L′ (

ZL
)

if Output layer L

δl =
((

Wl+1
)T

δl+1
)

� f l ′ (Zl
)

if l < L
(6.5)

{
δL = (Y − Yt) � f L′ (

ZL
)

if Output layer L

δl = (
Wl+1 � δl+1

) � f l ′ (Zl
)

if l < L
(6.6)

symbol � : element-wise, � : deconvolution

The error propagation process is different for average pooling and max pooling. The
error is divided evenly with a square of the window size if it is average pooling. For
the max pooling case, the error only propagates to the max positions stored during
the FP stage.

124 J. Heo and J.-Y. Kim

6.2.3 Gradient Calculation and Weight Update

To calculate the gradient matrix, each layer operates the propagated error and the
activation. As shown in Eqs. 6.7 and 6.8, outer product and convolution are applied
for the fully connected and convolutional layer, respectively. Like in BP, GC utilizes
the activation results stored during FP.

Wl+ = Wl − η · δl ⊗ Hl−1 (6.7)

Wl+ = Wl − η · δl ∗ Hl−1 (6.8)

symbol⊗ : outer-product, ∗ : convolution

Finally, the weight parameters are updated by subtracting the multiplied product
scaled by the learning rate. The learning rate is a hyperparameter that decides the
magnitude of a moving step in SGD, deciding how fast the learning would be, while
the gradient represents the direction of movement to minimize the loss. If the mini-
batch size is more than one, the calculated gradient matrices should be averaged
before the weight updated is performed.

6.3 SRAM-Based PIM for Training

Although SRAM-based PIM suffers from low memory density, its logic process is
best to implement high-speed logic circuits. Some SRAM-based PIM works [1–3]
have been proposed for on-device training, achieving high energy efficiency with
good training accuracy.

6.3.1 Two-Way Transpose SRAM PIM

Su et al. [1] suggest the first SRAM-based PIM supporting both FP and BP stages
of the training. Before this work, previous PIM chips mostly focused on low-energy
inference scenarios for intelligent edge applications. This paper proposes a two-
way transpose (TWT) SRAM macro that supports multi-bit MAC operations for FP
and BP with high energy efficiency and compact area. It also contains customized
sense amplifiers called small-offset gain-enhancement amplifiers to reduce energy
consumption. The authors fabricated a chip in a 28 nm CMOS technology to verify
the proposed design. Even though it is the first fabricated SRAM-based PIM that
performs both FP and BP, it is impractical to be used in actual ML training because
it does not cover the whole process, missing the GC and WU stage.

6 PIM for ML Training 125

Fig. 6.1 Overall design of two-way transpose PIM

6.3.1.1 SRAM Compute-in-Memory Macro Design

Figure 6.1 shows the overall design of the TWT SRAM PIM macro. It consists of FP
input driver, BP input driver, and 32 × 16 multibit-weight-product-units (MWPUs),
whose total memory size is 64K bits. To support both multi-bit computation and
digital conversion of the computed analog signal, the macro contains 16 multibit-
readout units for FP (MRU-F) at the bottom and 32 MRUs for BP (MRU-B) on the
right of the MWPU array. Each MWPU is composed of 8 bit-wise product units
(BWPUs), in which each BWPU contains 16 SRAM cells in a column. An 8-bit
weight is stored in the 8 cells on the same rows across the BWPUs. At the bottom of
the BWPU, a TWT multiply cell (TWT-MC) exists to multiply the 1-bit weight from
the cells and 2-bit input, utilizing voltage variation of bitline. The macro iterates
multiple phases of 2-bit multiplication if the input bit width is greater than 2 and a
multiple of 2.

6.3.1.2 In-memory Multiplication for Forward and Backward
Propagation

Figure 6.2 illustrates how TWT macro performs in-memory multiplication in the
BWPU. The TWT-MC inside BWPU has 2 pass transistors (N1 and N2) and 2×3
multiply transistors (N3-N5 and N6-N8). For the case of FP, the macro precharges
column-read-bitline (C-RBL) to VDD and sets row-read-bitline (R-RBL) to the
ground. Then, it injects the two input bits, which is an activation data, via the
forward wordline of MSB (FWLM) and LSB (FWLL). The FWLM and FWLL
are connected to N3 and N7, respectively, and the weight is connected to both N5
and N6. Their values decide to either connect the path from the pre-charged bitline,

126 J. Heo and J.-Y. Kim

Fig. 6.2 BWPU Design and in-memory multiplication

C-RBL, to the ground or disconnect the path. If connected, the voltage drop occurs
in C-RBL. To differentiate the amount of voltage drop according to the bit position
of the input bits, the width of the multiply transistors whose gates are connected to
a higher input bit, i.e., N5 transistors, is double that of those connected to the lower
input bit, i.e., N6 transistors. This is because the current of a transistor increases with
the gate width. As a result, the voltage drop that ranges from 3ΔV to 0 is generated
on C-RBL, and its value is equivalent to the multiplication between the 2-bit input
and 1-bit weight, as delineated in the table. Since the 32 BWPUs across the MWPUs
on the same column share the C-RBL, their voltage drops are all accumulated via
the charge sharing. Once this analog computation is done across all the columns of
BWPUs, the results are transferred to the MRU-Fs in which each contains SOGE-
SA, shifter, and digital adder. SOGE-SA converts the analog values to digital values,
and the shifter performs shifting considering their bit positions. The digital adder
accumulates the shifted results and generates the final value in 20 bits.

During BP, the macro precharges R-RBL to VDD and sets C-RBL to ground.
Then, it injects the two input bits, which is an error in this case, through the
backward wordline of MSB (BWLM) and LSB (BWLL). The post steps are similar
to FP, except MWPUs on the same row are added across different columns through
charge sharing of R-RBL to implement a transposed multiplication. In addition, the
computation results are transferred horizontally to MRU-B.

6.3.2 CIMAT

Jiang et al. [2] propose a transpose SRAM-based computation-in-memory (CIM)
architecture named CIMAT for multi-bit precision DNN training. The authors
suggest three key architectural features to accelerate on-device training: 7T and 8T
transpose SRAM bit-cell design, weight mapping strategies and data flow, and layer-
level pipeline design for the training process. With them, CIMAT supports all four

6 PIM for ML Training 127

Fig. 6.3 (a) 7T transpose SRAM cell (b) 8T transpose SRAM cell (c) Overall architecture of
CIMAT

stages of training (i.e., FP, BP, GC, and WU), unlike the TWT SRAM PIM only
covers the first two. Modeled in a 7 nm CMOS technology, CIMAT successfully
trains the ImageNet using the ResNet-18 model, achieving the energy efficiency of
10.79TOPS/W with the area of 121.51 mm2. It is simulated based on NueroSim [4].

6.3.2.1 7T and 8T Transpose SRAM Cell Design

CIMAT proposes custom 7T and 8T transpose SRAM cell for in-memory processing
while having standard 6T SRAM cells for generic usage as well. Figure 6.3a
shows the proposed 7T SRAM cell, which allows bidirectional read, horizontal
and vertical, and read-disturb-free access. It feeds the activation data to the weight
data stored in the cell array differently according to its operation mode. During FP,
column read wordline (C_RWL) is used for activation injection, and column-read-
bitline (C_RBL) is used as a bitline for vertical partial sum read-out. The value
of C_RBL becomes 1 only if both the weight bit on Q and the injected bit on
C_RWL are 1. Therefore, the in-memory computation implements AND operation,
and CIMAT uses this as a basic operation. For BP, their roles are changed. An error
bit is injected through R_RWL, while R_RBL is used for horizontal partial sum
read-out.

CIMAT also proposes an 8T SRAM cell that can execute FP and BP concurrently
for higher throughput as shown in Fig. 6.3b. Occupying an additional area, the 8T
SRAM cell design adds a PMOS transistor whose gate is connected to QB to support
read accesses from both sides of the cell. In addition, R_RWL and R_RBL are added
and connected to the PMOS transistor. C_RWL and R_RWL are used for activation

128 J. Heo and J.-Y. Kim

and error input, respectively. Likewise, C_RBL and R_RBL are used for reading out
partial sum by column and row, respectively.

Figure 6.3c shows the overall architecture of CIMAT, having a memory array
based on the proposed 7T/8T SRAM cells with extra periphery circuits. To enable
read/write and in-memory operation of the SRAM cell array, CIMAT has wordline
writers in both directions for injecting activations via C_RWLs and errors via
R_RWLs to the cells, a wordline decoder for writing weights to the cells, and
a precharger for pre-charging write bitlines (WBLs) and bitline bars (WBLBs).
To compute the result of the SRAM cell array, it has ADCs for the partial sum
quantization and shifter and adder for accumulation of digital partial sums in bit-
serial arithmetic. Two groups of periphery circuits exist at the bottom and the right
side of the SRAM array. There is a special row of 6T SRAM cells at the top side of
the SRAM array for WU.

6.3.2.2 Weight Mapping Strategies and Data Flow

CIMAT flattens a 3-d kernel in the direction of input channels and maps the
flattened elements from different filters to different columns in a sub-array. Different
locations of the elements in a filter are stored across different sub-arrays (e.g., 9
sub-arrays are required for 3 × 3 × N filters). CIMAT uses an adder tree to add
the partial sums from different sub-arrays. To perform MAC operation using the
in-memory operation, CIMAT pre-writes weights to the 7T/8T SRAM cells and
injects activations through read-wordlines, C_RWL in Fig. 6.3. CIMAT adds the
results of in-cell AND operations among different rows through the read bitlines and
accumulates the results of different sub-arrays through the adder tree. Even though
the adder tree can be an additional cost, it adopts this spatial accumulation scheme to
make the FP and BP operation symmetric. Without this mapping, an accumulation
result inside a sub-array is asymmetric because the result of FP is an entire partial
sum while the result of BP is just part of the partial sum.

The transpose SRAM cell design of CIMAT removes the overhead of transposing
the weight matrix of BP. With the proposed array design, the mapping scheme
of the weight matrix to the SRAM array does not need to change. Instead, the
accumulation direction should be reversed, from vertical to horizontal. With the
same periphery circuits, the rest of the computation is the same as FP. With the
proposed 8T SRAM design, FP and BP can be performed simultaneously within the
same sub-array.

CIMAT uses extra non-transpose 6T SRAM arrays during GC to perform
convolution operations between the error maps and corresponding activation maps.
It first saves the error data in the SRAM array and loads the activation from the
off-chip DRAM to the on-chip buffer. Each plane of error data is stretched into one
column, and the next column stores the following output channel elements. CIMAT
executes bit-wise multiplication and accumulation using the periphery circuits used
in FP. The results of the columns form the entire gradient matrix. The multi-batch

6 PIM for ML Training 129

mode sends the gradients to off-chip DRAM to store the data. At the end of each
batch, gradients are loaded back and accumulated on-chip.

After GC is done, each row of the gradient results is fetched to the additional 6T
SRAM row residing above the 7T/8T SRAM. The data are fed into the shift registers
row-by-row in a read-modify-write mode to multiply the learning rate. After that,
the 6T row and a paired weight row of 7T or 8T are activated simultaneously. The
subtraction of the two rows is done in the weight update module. To speed up this
row-by-row data processing, CIMAT proposes an array-level pipelined architecture
that updates different significant bits at different stages, as shown in Fig. 6.4.

6.3.2.3 Pipeline Design

In the case of 7T SRAM, CIMAT uses a 7-stage layer-level pipelining during FP and
BP for achieving high throughput (Fig. 6.5a). Each stage computes multiple layers
of a different image, while multiple images are processed throughout the pipelines

Fig. 6.4 Array-level pipeline design for weight update

Fig. 6.5 Layer-level pipeline design (a) 7T SRAM (b) 8T SRAM

130 J. Heo and J.-Y. Kim

simultaneously. CIMAT balances out the execution times of stages by computing a
different number of layers in each stage. The 7T SRAM design cannot execute FP
and BP processes simultaneously because it only has a single read bitline. Either
C_RBL or R_RBL acts as a read bitline, and the other acts as a read wordline, or
vice versa. For example, when C_RBL is used for injecting input activation, C_RWL
is used for partial sum read-out during FP. Therefore, FP and BP of one batch are
computed serially, stage by stage.

On the other hand, 8T SRAM has two dedicated read bitlines, C_RBL and
R_RBL. Using this, the BP processing of a previous image can be performed with
the FP processing of a current image. For example, the box with 2/1 at time T8
means that the SRAM array is running both FP of the 2nd image and BP of the
1st image for the layer stage 7. This pipelined parallel execution of FP and BP is
enabled by dual-bitline in the cell design and it boosts the throughput performance a
lot. The generated intermediate data from both processes need to be saved off-chip
for GC.

For a mini-batch that includes multiple images, GC generates gradients image by
image. For example, if the mini-batch size is 128, 128 different weight gradients are
generated after 128 runs. Finally, those gradients are averaged outside the chip, and
the final WU is executed in one step inside CIMAT.

For the case of 8T SRAM, BP forms pipelines together with FP thanks to
bidirectional readable cell design. As shown in Fig. 6.5b, the WG of the stage, which
finishes both FP and BP, is also executed at duplicated CIM arrays with pipelining.
By doing this, CIMAT saves energy consumption due to the reduction in off-chip
memory access and on-chip standby leakage current.

6.3.3 HFP-CIM

Lee et al. [3] propose a heterogeneous floating-point computing-in-memory archi-
tecture (HFP-CIM) by separately optimizing exponent processing and mantissa
processing. The authors observe that most of the previous PIM works [1, 2] use
fixed-point data due to the computational complexity of floating-point numbers.
The complexity is mainly caused by the different operating characteristics between
mantissa and exponent. For the multiplication of floating-point numbers, the
exponent part can be done by simple addition and subtraction, while the mantissa
part requires addition, subtraction, shifting, and leading-one-detection. Therefore,
the computation cost of mantissa is much more expensive than that of the exponent,
although the overheads of fetching and saving from/to memory are similar in
both cases. Considering that PIM is specialized in computing simple operations in
parallel due to its tight area and resource constraint, the PIM design that integrates
both simple exponent computation and complex mantissa computation is worse than
the one with only simple exponent computation from the performance perspective.
This is why previous PIM works use simpler fixed-point as their data format.

6 PIM for ML Training 131

However, using fixed-point numbers in ML training can harm its accuracy, which is
a critical problem.

HFP-CIM suggests three key features to process floating-point numbers in PIM
efficiently: (1) heterogeneous floating-point computing architecture and hardware
design, (2) computing algorithm that reduces the communication between exponent
and mantissa, and (3) data mapping and additional computing unit to support ML
training. HFP-CIM is fabricated and verified in a 28 nm CMOS technology.

6.3.3.1 Heterogeneous Floating-Point Computing Architecture

As mentioned above, there may be a performance problem if we integrate both
exponent and mantissa processing in the PIM hardware. Compute SRAM [5]
supports both exponent and mantissa processing in a PIM macro. It has separate
memory space for exponent and mantissa and performs processing for each by
sharing the compute-in-memory logic in different time frames (i.e., time multi-
plexing), as illustrated in Fig. 6.6a. The proposed PIM macro suffers from a long
latency in computing floating-point MAC. For instance, it requires more than 5000
cycles to compute 16-bit brain floating-point (BFP16) multiplications and a 32-bit
floating-point accumulation using a single row of the macro. The proposed design
tries to tackle a long latency issue by leveraging a high throughput. Each row
performs the computation in parallel and gets multiple MAC results simultaneously.
Nevertheless, the throughput degradation is still a problem since the utilization of
macro rows is not always high. To address this problem, HFP-CIM decouples the
exponent and mantissa processing and adopts PIM only for exponent operations. It
proposes exponent computing-in-memory (ECIM) and mantissa processing engine
(MPE). ECIM stores the exponents in memory and sends the shift amounts to MPE
to reflect the difference of exponents. Then, each MPE performs shifting for both
operands and multiplication and applies a normalization that configures the internal
MAC result to a pre-defined floating-point format. The MPE returns a result of
normalization to ECIM for exponent update in an exponent comparator. With this
decoupled design that utilizes both in-memory and normal logic processing, HFP-

Fig. 6.6 (a) Conventional floating-point computing (b) Heterogeneous floating-point computing

132 J. Heo and J.-Y. Kim

Fig. 6.7 (a) Overall architecture of ECIM (b) MFEC dataflow

CIM can execute floating-point MAC within two cycles. Figure 6.6b shows the
concept of proposed heterogeneous floating-point computing.

Figure 6.7a shows the overall architecture of ECIM. It comprises CIM local
arrays (CLAs), CLA decoder, wordline driver, normal I/O interface, and the
peripherals for exponent computations. Its in-memory processing is composed of
four steps: (1) storing the weight’s exponent value in SRAM cells, (2) executing
in-cell AND/NOR operation on local bitline (LBL) and bitline bar (LBLB) by
enabling wordline of computing row after pre-charging LBL with exponent value
of an input, (3) transferring the value of LBL and LBLB to global bitline bar
(GBLB) and bitline (GBL) through drivers, and (4) loading the results in the global
lines to peripheral circuits for further processing such as addition, subtraction,
and comparison. During this process, the ECIM reduces power consumption with
the following two features. First, it only precharges a single bitline, while the
conventional memory precharges both bitlines (i.e., LBL and LBLB) to VDD for
read operation. ECIM either precharges LBL or LBLB depending on the input
value. Second, it reuses the charge in GBL to reduce the switching power of ECIM.
Not precharging every cycle, GBL reuses its charge from the previous cycle if the
current cycle’s in-cell AND/NOR result is the same. Since DNN computations tend
to produce similar values on the results, exploiting temporal locality in memory is
effective to energy-efficient hardware design.

Even though ECIM reduces the power consumption of exponent computation,
mantissa computation in MPE still has two problems. First, the normalization result
of mantissa has to be transferred to ECIM every cycle for exponent update. This
process causes throughput degradation due to massive communication between the
mantissa and exponent part. Second, the power consumption of mantissa’s expen-
sive arithmetic units such shifter and leading-one-detector is still high even after
the ECIM is adopted. To solve these problems, HFP-CIM develops a mantissa-free-

6 PIM for ML Training 133

exponent-calculation (MFEC) algorithm, as shown in Fig. 6.7b. Unlike conventional
floating-point MAC, MFEC does not normalize the mantissa result every cycle.
Instead, it applies the normalization once after enough partial sum accumulation
using a high-precision accumulator and an overflow detector, as there are many
partial sums to be accumulated in DNN computation. By using MFEC, the
processor minimizes the redundant normalization process of conventional floating-
point MAC.

6.3.3.2 Overall Processor Design and Sparsity Handling

Figure 6.8a shows the overall processor design using HFP-CIM, composed of
the top RISC controller, multiple instances of heterogeneous-exponent-mantissa-
training-core (HEMTC), aggregation & activation core (AAC) that accumulates

Fig. 6.8 (a) Overall architecture of proposed processor (b) Data mapping

134 J. Heo and J.-Y. Kim

partial sums from HEMTCs, and 1-D SIMD core computing element-wise multi-
plication. The HEMTC contains the ECIM macro and MPEs. Utilizing these units,
the processor supports the ML training composed of FP, BP, GC, and WU. It devises
a data mapping that can additionally support the convolutional layer as well as
maximally reuse partial sums for MFEC.

Figure 6.8b shows the data flow and data mapping of the proposed processor.
There are two kinds of accumulation, and the first one is input channel accumulation.
Each column of CLAs in ECIM contains the weight of different output channels,
which is first flattened in the input channel direction. These values between all the
rows are accumulated. After the input channel accumulation, the weight value in
ECIM is changed to another element of the kernel window, the corresponding input
value is injected, and the same accumulation process is performed. This process is
image accumulation, and during these two steps, the partial sums are accumulated in
the same memory space. This paper does not describe how all the processor executes
numerous functions of ML training and movement of intermediate data.

As previous works [6, 7] exploit the sparsity of data for high energy efficiency,
HFP-CIM processor also performs zero-skipping. The zero skip controller in
HEMTC gets non-zero encoded exponent, mantissa, and bitmap from memory. Then
it converts them into non-zero value feature maps with their corresponding indexes,
saves them in queues, and feeds the data into ECIM and MPE. With these data
feeding schemes, the HEMTC reduces energy consumption and latency by skipping
the calculation of zero values.

6.4 ReRAM-Based PIM for Training

Metal-oxide resistive random access memory (ReRAM) stores bit information by
changing the resistance of the cell. ReRAM has recently received much attention as
a suitable non-volatile memory for PIM, because it can store a large DNN model
with fast read speed and perform efficient matrix-vector multiplication in a crossbar
structure. Recent PIM works proposed ReRAM-based CNN inference accelerators
to overcome the memory bandwidth bottleneck [8, 9]. Some other works have
aggressively adopted ReRAM technology for ML training to show its possibility
[10, 11]. This section describes ReRAM-based PIM accelerators that support ML
training as well as inference.

6.4.1 PipeLayer

Song et al. [10] propose PipeLayer, a ReRAM-based PIM accelerator for CNN.
The authors claim that previous ReRAM-based PIM works, PRIME [8] and ISAAC
[9], cannot support training due to a few reasons. Both works do not consider the
complex data dependency of training. Unclear data organization and data mapping

6 PIM for ML Training 135

of PRIME make it hard to handle different data movements in FP and BP of training.
ISAAC’s deep pipelining for increasing system throughput is only effective when
there are sizable consecutive inputs, but that is not the case in the training. Moreover,
its pipeline design is vulnerable to bubbles and stalls. PipeLayer suggests a simple
intra-layer and inter-layer pipeline design that executes both inference and training
operations to overcome the above problems. In addition, unlike other conventional
ReRAMs, PipeLayer adopts a spike-based input/output signaling scheme rather than
a voltage-level-based. This scheme eliminates the overhead of DACs and ADCs.
PipeLayer is simulated based on NVSim [12] and its energy and area model use the
measurement results from Niu et al. [13] and Fackenthal et al. [14].

6.4.1.1 Architecture of PipeLayer

PipeLayer exploits ReRAM cells to perform computations without using other
processing units. The proposed design is divided into morphable sub-arrays (Morps)
and memory sub-arrays (Mems). Morp performs computation and stores the data,
while Mem is only used for data storage. For the DNN training, each Morp computes
a layer while Mem stores both the activation data that propagates to the next
layer and the intermediate data generated during FP that are necessary for BP,
GC, and WU. The role of Morp is interchangeable; PipeLayer uses Morp as a
computation unit during inference for high throughput or as a Mem during training
for storing intermediate data. PipeLayer handles mini-batching by averaging the
partial derivatives if the batch size B is larger than one. Mem accumulates the partial
derivatives of a mini-batch and sends the values to Morp, and Morp reduces the
magnitude of input spikes by B.

Fig. 6.9 Architecture overview of pipeLayer

136 J. Heo and J.-Y. Kim

Figure 6.9 shows the overall architecture of PipeLayer. Note that it does not
include any processing units for computations as the ReRAM cell arrays substitute
them. The in-memory computation of PipeLayer is similar to that of ISAAC.
It uses a weight spike coding scheme for input/output signaling to remove the
overhead of ADCs and DACs. Unlike ISAAC, which still needs ADCs for output
spikes, PipeLayer does not need both DACs and ADCs thanks to the spike driver
and integration-and-fire circuits, respectively. When the input is N bit, the spike
driver iterates N times and generates a sequence of weighted spikes by looking up
reference voltage at each cycle. Then, it feeds them to the ReRAM cell array (i.e.,
Morp). The weight data is stored in the ReRAM cell array as cell conductance,
and cells are located at the cross points of the wordlines and bitlines. Since the
multiplication result of conductance and voltage is a current value, a current flowing
at each cell can be viewed as a multiplication result of the input value from the spike
driver and the weight value in the cell. Then, PipeLayer accumulates the in-cell
multiplication results by sharing the current on a bitline. After accumulation, it uses
integration-and-fire (I&F) unit, which integrates input current and generates output
spikes. Furthermore, the counter connected to the output spikes finally converts the
spikes to digital values. For the network that needs high resolution, it accumulates
the partial sums after shifting.

6.4.1.2 Data Mapping and Parallelism of PipeLayer

As shown in Fig. 6.10a, PipeLayer flattens weight kernels and stores them in
Morp. Each column of the cell array includes the weights from a flattened kernel.
PipeLayer feeds the input data after flattening them with the same method as the
kernel’s. For the input case whose width and height are set to 114, PipeLayer feeds
the input data through wordlines and accumulates the multiplication results through
bitlines. Because it takes only a single cycle for element-wise multiplications
between a flattened input and each of the weights by using all the cross points,
it needs 112 × 112(=12544) cycles to finish all the outputs. Since the mapping of
all kernels to a single huge ReRAM sub-array is unrealistic, PipeLayer partitions it
into smaller ReRAM sub-arrays with a size of 128 × 128.

To improve performance, PipeLayer can compute multiple flattened inputs at
the same time for the weights in the same layer. This strategy is called intra-layer
parallelism. To this end, PipeLayer needs to store the same weight data G times
(Fig. 6.10b). For an extreme case, the results of the layer could be generated in just
one cycle if G is 12544. The authors chose the G value to 256, considering the linear
increase in hardware cost. Since it is only simulation-based, we are not certain that
PipeLayer can be efficiently implemented.

In addition, PipeLayer exploits inter-layer parallelism where it computes multiple
layers from different images in a mini-batch in parallel. For this parallelism, the
proposed design does a data computation pipeline from different images that do
not have data dependency between them. Figure 6.10c compares a conventional
design and the proposed strategy. In the conventional design, the computation is

6 PIM for ML Training 137

Fig. 6.10 (a) Data mapping of PipeLayer (b) Intra-layer parallelism (c) Inter-layer parallelism

sequential and has a long latency since there is no pipelining. The pipelining design
of PipeLayer increases the throughput by computing different images at different
Morp concurrently. However, the PipeLayer needs more buffers to enable this high-
performance pipelining design, which causes extra area overhead.

6.4.2 FloatPIM

Imani et al. [11] propose FloatPIM, a ReRAM-based in-memory accelerator for
DNN training with floating-point data type. The authors pointed out three critical
problems for the previous ReRAM-based PIMs that support DNN training. First,
they are bounded to fixed-point precision because a floating-point number requires
more multi-bit memristors to represent a value. This constraint causes an accuracy
drop during training. Second, the usage of ADC/DAC blocks has a considerable
overhead in chip area and power. Third, the multi-bit memristor is not sufficiently
reliable for commercialization, unlike single-level NVMs [15].

138 J. Heo and J.-Y. Kim

FloatPIM supports both floating-point and fixed-point computation by using the
basic NOR operations of single-bit devices. Unlike other ReRAM-based PIMs using
analog computation, FloatPIM uses digital computation. Thus, it does not need area
and power-hungry ADC/DAC blocks. The top-level operation process comprises
two phases: the computing phase and the data transfer phase. All the blocks of
FloatPIM compute the matrix multiplication and convolution in parallel during the
computing phase. Each block transfers the result row to its neighbor block in a
pipelined manner in the data transfer phase. FloatPIM is synthesized using System
Verilog and Design Compiler. It is evaluated with a custom cycle-accurate simulator,
circuit-level simulators including HSPICE, and mathematical models. Although
FloatPIM is the latest ReRAM-based PIM architecture supporting the whole process
of DNN training, its feasibility to real hardware is not clear.

6.4.2.1 FloatPIM’s Digital Operation

Unlike conventional memristor processing leverages fast and energy-efficient ana-
log computation with ADC/DAC blocks, FloatPIM computes only in the digital
domain and stores the values directly to the cells. Hence, it does not need any
ADC/DAC blocks and sense amplifiers that incur hardware overhead. Figure 6.11a
shows the digital computation in FloatPIM. The state of an output device switches
between the two resistive states, RON (low resistance or logical 1) and ROFF (high
resistance or logical 0), whenever the voltage across p and n terminals exceeds a
threshold. FloatPIM uses this property to implement the NOR gate in a memory.

In the beginning, only the output device is initialized to RON while the other
inputs are set to ROFF . Then the execution voltage V0 is applied at the p terminals

Fig. 6.11 (a) Digital PIM operations (b) Overview of FloatPIM

6 PIM for ML Training 139

of the inputs. If the state of all parallel-connected input devices is ROFF , the state
of the output device does not change. However, if one of the input devices’ state
changes to RON , the output memristor is switched from RON to ROFF . Since an
assertion among the input devices causes the output de-asserted, it implements the
NOR operation. As NOR operation is functionally complete, other arithmetic oper-
ations such as addition and multiplication can be implemented. Each row contains
cells for storing both operands to read simultaneously and separate processing cells
only for storing intermediate results. In-memory operation of ReRAM-based PIM
is slower than CMOS-based PIM due to the slow switching speed of the memristor.
To overcome this, FloatPIM suggests even more parallelism during computation. It
can compute addition and multiplication in parallel, irrespective of the number of
rows.

Figure 6.11b depicts the overview of FloatPIM. It is composed of crossbar
memory blocks, in which each block contains data from a different layer of
DNN. The memory blocks store only weight data during inference. However,
during training, they store weights, activation gradients (derivatives of activation
functions), and results of activation functions. Each block sends computation results
to the next block through the switch that aligns the data structure for the data transfer
phase.

6.4.2.2 Hardware Architecture

Figure 6.12 shows the hardware architecture of FloatPIM. It comprises 32 tiles, in
which each tile contains 256 memory blocks, and each memory block contains 1k
× 32k data. FloatPIM reads and writes data in a row-parallel way. To enable this, it
utilizes the switches during data communication between blocks. When FloatPIM

Fig. 6.12 Hardware architecture of FloatPIM

140 J. Heo and J.-Y. Kim

reads a vector from the block, the switch connects each row data point to each
driver’s column for the write operation to the next block. The shifter is inside the
memory block to support convolution operation. The controller computes the loss
function and controls data drivers and switches.

FloatPIM uses different parallelism schemes in FP and BP. For FP, it computes
each batch in each tile at the same time. For BP, the FloatPIM has 2 configurations:
low-power FloatPIM (FloatPIM-LP) and high-power FloatPIM (FloatPIM-HP). It
determines the parallelism strategy considering the trade-off among speed, energy
efficiency, and memory size. In the FloatPIM-LP, a single memory block iteratively
computes all data points in a mini-batch, generates gradients, and subtracts gener-
ated gradients from the current weights. In contrast, in the FloatPIM-HP, multiple
blocks compute different data points in a mini-batch in parallel, sum up the gradients
across different blocks, and update the weights. Even though FloatPIM-HP performs
computation faster, the weights need to be duplicated in each block. This duplication
makes FloatPIM-HP consume large memory and energy.

6.4.2.3 Training of FloatPIM

During FP, FloatPIM processes the input data in a pipeline stage. While the value
of a single batch passes through each data point, FloatPIM stores gradients and the
results of activation functions in each data point. For BP, FloatPIM measures the
loss function in the last output layer and updates the weights of each layer using the
previously stored data, while error propagates each data point.

Figure 6.13a shows how FloatPIM performs two key operations of CNN: matrix-
vector multiplication and convolution operation. FloatPIM stores multiple copies
of the input vector in multiple rows and stores the weight matrix in the transposed
shape for matrix-vector multiplication. It first performs the multiplication between
the inputs and weights and then accumulates the multiplication results horizontally.
While FloatPIM performs the computation in a row-parallel way for high perfor-
mance, it always needs extra memory for input vector copy, which is memory area
overhead.

FloatPIM performs convolution using weight interconnect logic, which is a
barrel shifter. It prevents frequent memory write operation, which is a considerable
overhead in ReRAM-based PIM since its memory write operation is slow. During
the convolution, FloatPIM stores all convolution weights in a single row and
copies them to other rows. It first multiplies the corresponding inputs and weights
considering the convolution window and computes the next multiplication with
shifted inputs. Then, it performs accumulation with the results for the final result.
Specifically, for the N × N convolution window, the number of the shift operations
is N − 1.

Since FloatPIM performs frequent data copy during both operations, it supports
an optimized data copy operation, which writes the same value to all rows within
two cycles. FloatPIM supports the Sigmoid function by using three terms of the
Taylor expansion and the ReLu function for the activation. The max/min pooling

6 PIM for ML Training 141

Fig. 6.13 (a) Matrix-vector multiplication and convolution (b) Training of FloatPIM

of FloatPIM first compares the exponent and then compares the mantissa with the
same maximum/minimum exponent.

During BP, GC, and WU, the error vector propagates to corresponding memory
blocks to access required data points for weight update. For the BP, FloatPIM
multiplies the copied error vector with the transposed weight matrix and multiplies
the activation gradient stored during FP. The resulting error propagates to the next
memory block. To perform GC, FloatPIM multiplies the same copied error vector to
the result of the activation function scaled with the learning rate and finally updates
the weight matrix. The whole process of CNN training in FloatPIM is summarized
in Fig. 6.13b.

References

1. J.-W. Su, X. Si, Y.-C. Chou, T.-W. Chang, W.-H. Huang, Y.-N. Tu, R. Liu, P.-J. Lu, T.-W.
Liu, J.-H. Wang, Z. Zhang, H. Jiang, S. Huang, C.-C. Lo, R.-S. Liu, C.-C. Hsieh, K.-T.
Tang, S.-S. Sheu, S.-H. Li, H.-Y. Lee, S.-C. Chang, S. Yu, and M.-F. Chang, 15.2 a 28 nm
64Kb inference-training two-way transpose multibit 6T SRAM Compute-in-Memory macro
for AI edge chips, in 2020 IEEE International Solid-State Circuits Conference-(ISSCC). IEEE,
Piscataway (2020), pp. 240–242

142 J. Heo and J.-Y. Kim

2. H. Jiang, X. Peng, S. Huang, S. Yu, CIMAT: a compute-in-memory architecture for on-chip
training based on transpose SRAM arrays. IEEE Trans. Comput. 69(7), 944–954 (2020)

3. J. Lee, J. Kim, W. Jo, S. Kim, S. Kim, H.J. Yoo, ECIM: Exponent Computing in Memory for an
Energy Efficient Heterogeneous Floating-Point DNN Training Processor. IEEE Micro (2021)

4. P.Y. Chen, X. Peng, S. Yu, NeuroSim: a circuit-level macro model for benchmarking neuro-
inspired architectures in online learning. IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst. 37(12), 3067–3080 (2018)

5. J. Wang, X. Wang, C. Eckert, A. Subramaniyan, R. Das, D. Blaauw, D. Sylvester, 14.2 a
compute SRAM with bit-serial integer/floating-point operations for programmable in-memory
vector acceleration, in 2019 IEEE International Solid-State Circuits Conference-(ISSCC).
IEEE, Piscataway (2019), pp. 224–226

6. J.H. Kim, J. Lee, J. Lee, H.J. Yoo, J.Y. Kim, Z-PIM: An energy-efficient sparsity aware
processing-in-memory architecture with fully-variable weight precision, in 2020 IEEE Sym-
posium on VLSI Circuits. IEEE, Piscataway (2020), pp. 1–2

7. J. Yue, Z. Yuan, X. Feng, Y. He, Z. Zhang, X. Si, R. Liu, M.-F. Chang, X. Li, H.
Yang, Y. Liu, 14.3 A 65 nm computing-in-memory-based CNN processor with 2.9-to-35.8
TOPS/W system energy efficiency using dynamic-sparsity performance-scaling architecture
and energy-efficient inter/intra-macro data reuse, in 2020 IEEE International Solid-State
Circuits Conference-(ISSCC). IEEE, Piscataway (2020), pp. 234–236

8. P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, Y. Xie, Prime: a novel processing-
in-memory architecture for neural network computation in ReRam-based main memory. ACM
SIGARCH Comput. Archit. News 44(3), 27–39 (2016)

9. A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J.P. Strachan, M. Hu, R.S.
Williams, V. Srikumar, ISAAC: a convolutional neural network accelerator with in-situ analog
arithmetic in crossbars. ACM SIGARCH Comput. Archit. News 44(3), 14–26 (2016)

10. L. Song, X. Qian, H. Li, Y. Chen, Pipelayer: a pipelined reram-based accelerator for deep
learning, in 2017 IEEE International Symposium on High Performance Computer Architecture
(HPCA) (pp. 541–552). IEEE, Piscataway (2017)

11. M. Imani, S. Gupta, Y. Kim, T. Rosing, FloatPIM: in-memory acceleration of deep neural net-
work training with high precision, in 2019 ACM/IEEE 46th Annual International Symposium
on Computer Architecture (ISCA). IEEE, Piscataway (2019), pp. 802–815

12. X. Dong, C. Xu, Y. Xie, N.P. Jouppi, NVSim: a circuit-level performance, energy, and area
model for emerging nonvolatile memory. IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst. 31(7), 994–1007 (2012)

13. D. Niu, C. Xu, N, Muralimanohar, N.P. Jouppi, Y. Xie, Design trade-offs for high density
cross-point resistive memory, in Proceedings of the 2012 ACM/IEEE International Symposium
on Low Power Electronics and Design (2012), pp. 209–214

14. R. Fackenthal, M. Kitagawa, W. Otsuka, K. Prall, D. Mills, K. Tsutsui, J. Javanifard, K. Tedrow,
T. Tsushima, Y. Shibahara, G. Hush, 19.7 A 16 Gb ReRAM with 200 MB/s write and 1 GB/s
read in 27 nm technology, in 2014 IEEE International Solid-State Circuits Conference Digest
of Technical Papers (ISSCC). IEEE, Piscataway (2014), pp. 338–339

15. Intel, Intel and Micron Produce Breakthrough Memory Technology (2015). Available
via DIALOG. https://newsroom.intel.com/news-releases/intel-and-micron-produce-
breakthrough-memory-technology/

https://newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough-memory-technology/
https://newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough-memory-technology/

Chapter 7
PIM Software Stack

Donghyuck Kim and Joo-Young Kim

This chapter will discuss a software stack for PIM and the challenges that must be
overcome to be well-suited in the conventional computer architecture. In a standard
term, a software stack consists of layers of software components that create a
complete platform without any additional component to support applications. It
provides an interface between hardware and programmers through the layers of
application, framework, library, runtime, and device driver. In order to efficiently
adopt PIM into the conventional architecture, a software stack needs modification
on these layers, as shown in Fig. 7.1.

The primary purpose of the PIM software stack is not just to make an application
run on the PIM hardware; it must be optimized for the PIM hardware in a seamless
manner, regarding the utilization of the hardware, scheduling, and optimization of
the code. Also, it must aim for high programmability and optimization to a variety of
applications and architecture systems, which should make PIM hardware convenient
to programmers and system architects.

7.1 PIM Software Stack Overview

In order to adopt PIM properly, we must thoroughly tackle the entire software
architecture layers, including PIM application, PIM library, and PIM device driver.
An application is a high-level software code that users write. However, not every
type of application could exploit PIM well. Due to the high internal bandwidth
of PIM with limited computation capability, only certain types of applications
could run better on PIM than other computation platforms such as CPU, GPU, and

D. Kim · J.-Y. Kim (�)
School of Electrical Engineering (E3-2), KAIST, Daejeon, South Korea
e-mail: kar02040@kaist.ac.kr; jooyoung1203@kaist.ac.kr

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J.-Y. Kim et al. (eds.), Processing-in-Memory for AI,
https://doi.org/10.1007/978-3-030-98781-7_7

143

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98781-7_7&domain=pdf
mailto:kar02040@kaist.ac.kr
mailto:jooyoung1203@kaist.ac.kr
https://doi.org/10.1007/978-3-030-98781-7_7

144 D. Kim and J.-Y. Kim

Fig. 7.1 Software stack with PIM modification support

accelerators. For example, machine learning is a type of application that can benefit
from PIM if appropriately applied. Especially, memory-intensive applications such
as fully connected layers can take advantage of PIM by supporting enough internal
memory bandwidth. One thing to notice is that an application itself may be
hardware-agnostic (i.e., does not know the PIM hardware property), missing the
chance of fully exploiting PIM resources. It needs a PIM library to do that job;
PIM library makes a seamless transition from a high-level application to the actual
execution of PIM. It has three essential roles. First, it identifies codes that could run
on PIM. Second, it generates PIM instructions identified as to be run on PIM and
prepares operand data for the PIM instructions. Third, it executes the PIM kernel
with the PIM instructions. After obtaining appropriate instructions and data with
the PIM library, the PIM instruction requests are sent to the PIM device driver. Then
the PIM device driver reserves memory space for data and instructions and offloads
them to a memory controller.

A recent research paper of HBM-PIM [1] gives an example of a complete PIM
software stack. Figure 7.2 depicts the overview of the modified software stack of
HBM-PIM for PIM adoption. Before diving into its software stack, we need a brief
explanation of the microarchitecture of the HBM-PIM execution unit. As shown
in Fig. 7.3, there are a scalar register file (SRF), general register files (GRF_A and
GRF_B), a command register file (CRF), and a 16-wide single instruction multiple
data (SIMD) floating-point unit (FPU). The SIMD FPU consists of a pair of 16 FP16
multipliers and adders. It is controlled by the RISC-style 32-bit instructions stored in

7 PIM Software Stack 145

Fig. 7.2 HBM-PIM software stack

Fig. 7.3 HBM-PIM microarchitecture

CRF, while the host is responsible for providing instructions to each PIM execution
unit. HBM-PIM’s instructions and instruction format are illustrated in Fig. 7.4.

The software stack shown in Fig. 7.2 is modified to utilize the PIM execution
unit efficiently. It supports basic linear algebra subprograms (BLAS), runtime, and
a device driver to allow users to run the original source code without any modifica-
tions. As another option of programming, it also supports PIM custom operations
that directly invoke the PIM hardware. They are PIM BLAS based TensorFlow
operations: addition (ADD), multiplication (MUL), rectified linear unit (ReLU),
long short-term memory (LSTM), general matrix-vector multiplication (GEMV),
and batch normalization (BN). They explicitly call the corresponding PIM BLAS
library. Then, the PIM BLAS calls the PIM kernel to generate PIM micro-kernel

146 D. Kim and J.-Y. Kim

Fig. 7.4 HBM-PIM instructions and format

codes and execute them. This path allows users for manual and direct use of the PIM
execution unit. In the case of not using the manual programming with PIM custom
operations, PIM runtime is responsible for a seamless connection. It optimizes the
TensorFlow operations and invokes a PIM kernel without having the user modifying
the original source code. PIM runtime consists of a pre-processor, memory manager,
and executor. The pre-processor analyzes the TensorFlow operations to find which
operations to offload to the PIM execution unit at runtime. The memory manager
manages the PIM operations and also maps PIM micro-kernel code and operand
data to the memory space allocated by the PIM device driver. The important thing
is to match the data location and the execution unit to minimize the data movement
overhead. The PIM executor calls and configures the PIM kernel. PIM device driver
reserves memory for the PIM execution unit. It forces the reserved memory space to
be uncacheable to guarantee the DRAM memory accesses from the host processor
to PIM. It also manages cache coherence issues between the host and the PIM
execution unit by not using caches for the shared data.

The programming model for the PIM execution unit is to execute the PIM
micro-kernel with a valid memory request to DRAM. The programming model is
depicted in Fig. 7.5. The most important aspects of the PIM kernel are utilizing
the whole internal HBM-PIM compute bandwidth and ensuring the order of the
memory requests to keep the execution order of the PIM micro-kernel. First, to
fully utilize the compute bandwidth of the HBM-PIM, it generates enough threads
to map kernels to all of the PIM execution units. Each thread can send a memory
request, and there should be enough number of threads to utilize the GRF accessing
size, which is 256B in total. Some threads are grouped and form a thread group

7 PIM Software Stack 147

Fig. 7.5 HBM-PIM programming model

that is mapped to an HBM pseudo-channel (pCHs). For example, HBM-PIM uses
a processor with an ISA memory access size of 16B. Then, to match the GRF
accessing size of 256B, 16 threads, each of which has a memory access size of
16B, are grouped in a thread group. There should be 64 thread groups for HBM-
PIM with 64 pCHs. Second, it must ensure the order of the memory request since it
correlates to the order of the execution of HBM-PIM and its correctness. To ensure
the order of memory requests in the same thread group, HBM-PIM uses barrier
application programming interface (API). The barrier API forces the PIM kernel to
preserve the order of the requests. HBM-PIM also resolves fence overhead between
different DRAM channels by one-to-one mapping of each thread group to each
DRAM channel. In between each thread group, it is programmed that each thread
group can only access a single DRAM channel, which reduces the requests overhead
between each thread group.

7.1.1 PIM Software Stack Challenges

The layers of the software stack must be modified to program PIM efficiently.
However, modifying the software stack for PIM introduces several challenges. First,
we must identify PIM offloading execution. There are types of applications or
executions that could run better on PIM. It is important to know what properties
they have and how to distinguish them from the rest. Second, data mapping must
be appropriately managed to reduce the data movement overhead. Mapping data in
an appropriate format is crucial for some types of PIM hardware. If data mapping
is properly done, it could relieve the internal data movement bottleneck. Third,
scheduling of the PIM executions must be applied for efficiency and the best
performance of PIM. It helps to optimize the utilization of the PIM and the host
processor by concurrently offloading execution kernels to both at the same time. To

148 D. Kim and J.-Y. Kim

schedule executions to appropriate hardware, we need to look at the information of
the list of executions and runtime resource utilization of each part of the hardware.
Fourth, a cache coherence issue must be resolved for shared data on PIM and the
host processor. Cache coherence issue occurs when multiple cores with their own
local cache try to access the same address data in memory. Each core might not
look at the same data value because the data might be modified in one core’s cache
but not in the others. This issue occurs the same for PIM and the host processor.
The host processor could still look at the stale data if the PIM changes a data value
in its local cache. There are conventional cache coherence protocols to solve this
issue. However, these poorly work for PIM due to the narrow off-chip bandwidth
between PIM and the host. The above challenges must be addressed with appropriate
solutions. The following sections discuss the challenges and recent research that
propose possible solutions.

7.2 PIM Offloading Execution

The first challenge is to identify what codes to be executed on PIM. Since not
every code is efficient running on PIM, we need to distinguish a PIM-friendly
code that effectively exploits PIM. PIM-friendly codes can be statically assigned
to PIM cores by programmers manually. It should come with a deep understanding
of the PIM architecture, code property, and the benefit of offloading codes to
PIM. Depending on what and how the PIM execution unit is designed in memory,
deciding what code to offload to PIM varies. Identifying PIM-friendly codes is
relatively straightforward for PIM cores with a custom logic if the PIM logic is
specialized for a certain function. For example, a PIM core in Newton [2] consists
of 16 multipliers and a reduction adder tree with a fixed data flow. This PIM
architecture is specifically designed for a particular application, a matrix-vector
multiplication in this case. Utilizing Newton for matrix-vector multiplications
results in promising performance with its specialized logic unit in each DRAM
bank. It gains wide internal bandwidth to each PIM core while reducing the amount
of data transferred from the memory to the processor, which eases the burden on
memory bottleneck issues. The energy consumption on off-chip data transfer is
significantly reduced, and the throughput is increased by utilizing higher internal
DRAM bandwidth.

On the other hand, identifying PIM-friendly codes in general-purpose PIM cores
is much more difficult. It must be analyzed that the code is memory-intensive, which
means there is a memory bottleneck on off-chip bandwidth between the memory and
the processor. Typically, PIM copes with memory-intensive but low data locality
applications. Conversely, CPU has an advantage in compute-intensive and cache-
friendly applications. Such memory-intensive applications require tremendous data
from memory. If the processor can only use the same data for few times and needs
to request a lot of data from memory more than a given off-chip bandwidth, memory
bottleneck happens. Boroumand et al. [3] propose an efficient tool flow rather

7 PIM Software Stack 149

than leaving identifying memory-intensive PIM-friendly code to programmers’
manual work. They analyze certain conditions of target applications by hardware
performance counters and the energy model. They suggest four criteria that the
code is PIM-friendly if (1) it consumes the most energy out of all functions in
the workload, (2) its data movement consumes a significant fraction of the total
workload energy, (3) the last cache misses per kilo instruction (MPKI) is greater
than 10, and (4) data movement is the single most significant component of the
function’s energy consumption.

This research demonstrates applying its tool flow in analyzing primary Google
consumer workloads, including the Chrome browser, TensorFlow mobile, video
playback, and video capture. For example, it evaluates the TensorFlow mobile
machine learning (ML) inference application with two candidates: packing and
quantization. Packing is a type of function to pre-process the matrix for GEMM
operations. It re-organizes the order of tiles in matrices to maximize the cache
locality, which causes considerable data movement. Quantization is a function to
convert 32-bit data type into 8-bit data type to minimize the computation. It is
applied twice to the input and output of every 2-d convolution. It scans minimum
and maximum values of data and does simple multiplication and addition for each
data. The primary purpose of these two functions in ML is to help minimize the
energy consumption and execution time during inference, but they do not seem to
serve their purpose well on the CPU. With frequent occurrences of the functions in
executing a whole application, the functions themselves cause significant overhead
in external memory access. However, the two functions satisfy the criteria of
PIM-friendly code by the fact that they are memory-intensive operations with low
computation overhead.

Figure 7.6 shows the breakdown of energy consumption and execution time for
various ML models on CPU. The two candidate functions for PIM, packing and
quantization, account for 39.3% of total system energy and 54.4% of data movement
energy between the CPUs and main memory. For the execution time analysis, they
appear to spend 27.4% of total execution time. Additionally, both candidates do not
require complicated computations so that PIM cores can handle them with minor
adjustments. Figure 7.7 shows the difference between the quantization flow on CPU-
only and CPU+PIM. Utilizing PIM minimizes the data movement overhead by
computing all the simple but memory-intensive quantization processes in memory.
This research shows the PIM cores running both functions reduce the power
consumption by 50.9% and the execution time by 57.2%. Most of the reduction
in power consumption comes from reduced data movement. Also, exploiting PIM
cores in doing such functions provides greater internal memory bandwidth, low data
access latency, and also enables parallel execution of GEMM in CPU while PIM can
take care of the offloaded functions.

150 D. Kim and J.-Y. Kim

Fig. 7.6 Energy and execution time breakdown on various models on CPU

Fig. 7.7 Comparison on quantization flow of CPU-only and CPU+PIM

7.3 PIM Data Mapping

The second challenge is to manage data mapping for efficient programming. Data
mapping strategy must consider the PIM hardware architecture and its target appli-
cation. Inappropriate data mapping scheme to the memory generates an even worse
data movement bottleneck in the system and degrades the overall performance with
inefficient data access patterns by PIM computation units. The best data mapping
strategy must be optimized differently for different types of PIM architectures and
applications since it affects the computing performance of PIM.

7 PIM Software Stack 151

Data mapping strategy depends on the size of the data granularity of PIM com-
putation units. Data granularity varies along with the location of PIM computation
units across different architecture levels, from DRAM’s subarray level to bank level.
They could be placed inside each DRAM’s bank and access only selected data after
a column decoder or before a column decoder with a whole row of the subarray.
For example, one type of PIM hardware is located in DRAM’s subarray level, and
PIM units have data granularity of an entire row [4–6] with bulk-bitwise operations.
The issue here is that they require data to be aligned in the same row and located
in a certain subarray in order for PIM to execute accurately. It can be managed by
generating sequentially aligned physical addresses from given virtual addresses in
the operating system and exposing subarray’s address information to the memory
controller. These approaches ensure that the data can be physically located in a
specific DRAM subarray within the same row.

Another type of PIM hardware is a bank-level PIM, where each PIM core is
located in each bank, and computation is done after the column decoder. Bank-
level PIM has fewer issues in aligning data since it requires a smaller size of data
granularity. However, the biggest issue comes from the irregular data access pattern.
Unlike CPU, bank-level PIM is limited to have caches or registers where some
amount of data can be held locally. Consequently, data access time is dominated by
accessing memory cells rather than each PIM core’s local registers. Additionally,
the relative distance between the bank that stores the target data and the PIM
computation unit that can be either in the same bank or another bank causes
overhead in data movement. First, a sequential memory accesses pattern guarantees
the shortest data read latency within a bank in DRAM. While it requires additional
row-to-row delay with DRAM’s pre-charge and activation commands in accessing
different row address data, a sequential memory access pattern can read the same
row without the additional delay. Second, memory access from a PIM core to its
neighbor bank memory burdens the global data bus. Many memory requests from
different PIM cores potentially cause bottlenecks between banks. This inter-bank
data movement can be done through a global data bus, if the PIM architecture
supports its bank-to-bank data transmission. Otherwise, it must be done by the
memory copy function, which moves data all the way from the source memory
address to the host and back to the destination memory address. A solution to this
issue can come from optimizing data mapping and assigning the proper PIM core to
execute with the corresponding data. By matching data location and the execution
of code to a specific PIM core, it is possible to alleviate the burden on the data
movement from one memory bank to another.

In order to alleviate these challenges, Hsieh et al. [7] propose a new programmer-
transparent data mapping mechanism. It co-locates offloaded code and data in the
same PIM computation unit by exploiting predictability in the memory access
patterns out of offloaded code blocks. Figure 7.8 shows the memory access patterns
for various memory-intensive workloads selected for offloading candidate code
blocks. They are backward propagation (BP), BFS graph traversal (BF), K-means
(KM), and CFD solver (CFD) from Rodinia 3.0 [8], LIBOR Monte Carlo (LIB) and
RAY tracing (RAY) from GPGPU-Sim [9], and Fast Walsh-Hadamard transform

152 D. Kim and J.-Y. Kim

Fig. 7.8 Analysis of memory access pattern

(FWT), scalar product (SP), and parallel reduction (RD) from CUDA SDK. The
result shows that 85% of all offloaded code blocks have a fixed offset between access
addresses, generating a predictable access pattern. With this predictability given,
observing only a small fraction, 0.1%, of initial offloading candidate instances can
achieve the same effect as observing whole offloading candidate instances in data
access. Although it can modify the data mapping for PIM offloaded code blocks, it
keeps the original memory mapping for the rest of the data to be executed on the
main CPU/GPU with maximized bandwidth utilization.

7.4 PIM Execution Scheduling

In this section, we will discuss the third challenge, the dynamic scheduling of PIM
offloaded code. Section 7.2 discussed PIM offloading execution in a static manner
such that a compiler statically identifies what code to offload to PIM with analytical
energy and memory models. Along with the static decision, the dynamic decision
can improve the optimization of the offloading code to maximize the utilization
of PIM and the host processor. Especially, there are research on scheduling GPU-
PIM architecture, as shown in Fig. 7.9. GPU-PIM architecture consists of multiple
3d-stacked memories and the main GPU with multiple streaming multiprocessors
(SMs). The 3d-stacked memory is a PIM module; it has computation capability
with SMs on its logic layer, which are the PIM computation units, and is topped
with memory layers.

Hsieh et al. introduce two issues in scheduling GPU-PIM execution and propose
a dynamic decision mechanism in scheduling GPU-PIM architecture. First, the
authors introduce that when a large number of offloading transactions are queued for
the PIM computation unit, which cannot handle fast enough, it causes a performance
bottleneck. In this case, GPU is waiting on the PIM computation unit to complete
whole executions. Second, they introduce that discrepancy in the bandwidth savings
of the off-chip data transmissions causes the memory bottleneck. It means that
offloading such transactions might only burden one of receive (RX) or transmit

7 PIM Software Stack 153

Fig. 7.9 GPU and processing-in-memory architecture

(T X) channels, while the other is left underutilized. T X is the transmit channel
from the GPU to the 3d-stacked memories, while RX is the receive channel from
the 3d-stacked memories to the GPU. It is necessary to look at RX and T X channels
separately in deciding whether to offload blocks to PIM or not. This work proposes
dynamic offloading aggressiveness control, which decides final calls on offloading
codes based on runtime information. The dynamic offloading aggressiveness control
adds two features in scheduling. First, it sets a limit on the number of pending
offloading requests. GPU manages the pending offloading requests to each PIM
computation unit and prevents further requests if it reaches their limit. Second, it sets
a threshold on bandwidth utilization rate. GPU monitors the RX and T X channels
not to burden off-chip data transmission. It will prevent additional offloading blocks
if the utilization rate passes the threshold.

As described earlier, PIM-friendly codes can be dynamically identified rather
than statically identified. The authors propose a new runtime mechanism that
identifies whether the selected code blocks should be offloaded based on the
conditions in GPU systems. This new mechanism selects instructions to offload to
PIM computation units without any programmer’s intervention. It provides seamless
offloading of instructions, functions, or library calls to PIM computation units. How
it works is simple with the following three steps. First, it estimates the cost-benefit
of the memory bandwidth in static compile time. The expected memory bandwidth
savings for different code blocks are calculated. Equation 7.1 estimates the changes
in the bandwidth of T X and RX when a certain code block is offloaded to GPU.

BWT X = REGT X − (NLD + 2 · NST)

BWRX = REGRX − (NLD + 1/4 · NST)
(7.1)

In load instruction, the address is sent through T X, and data is received
through RX. In store instruction, address and data are sent through T X, and the
acknowledgment messages are received through RX. REG represents the number
of registers transferred through the RX or T X channel, and N represents the number

154 D. Kim and J.-Y. Kim

of loads or stores in an executed code block. Second, it then identifies potential
offloaded candidate code blocks if the result of (BWT X + BWRX) in Eq. 7.1 is
negative. It means that the overall benefit of offloading the code block is expected
to save off-chip memory bandwidth. The compiler also marks it with 2-bit tag bits
indicating whether the code benefits to save RX and T X bandwidth. Third, it makes
the final decision based on two runtime information. GPU keeps track of pending
offloading code block requests to each PIM computation unit and monitors the
bandwidth of T X and RX channels. With this information, GPU can block further
requests based on their 2-bit tag bits when it exceeds each PIM computation unit’s
hardware limit or bandwidth utilization threshold of T X and RX channels. This
dynamic final decision call for the offloading request may override the previous
compiler’s offloading request.

Adding PIM into a current architecture requires harmonization of kernel exe-
cution between GPU and PIM computation cores. Due to the sequential execution
of the kernels, GPU and PIM suffer from under-utilization of hardware resources,
even with the accurate prediction model for kernel offloading. For example, while
PIM cores in memory are executing on kernels, GPU is underutilized and not
running. It wastes GPU resources while GPU is waiting on PIM to finish or
following GPU kernel requests to arrive. In order to solve this issue, Pattnaik et
al. [10] conduct research on scheduling GPU-PIM architecture, which investigates
concurrent scheduling mechanisms on multiple kernels on the main GPU and
the PIM computation units in memory. It proposes two new runtime techniques:
kernel offloading mechanism and concurrent kernel management mechanism, as
illustrated in Fig. 7.10. The authors propose a new kernel offloading mechanism
that identifies where to execute a kernel with a regression-based affinity prediction
model at runtime. The regression model is built on a kernel-level analysis with
three categories: memory intensity, kernel parallelism, and shared memory intensity.
Table 7.1 summarizes the metrics used for predicting compute engine affinity and
execution time of main GPU and GPU-PIM.

The detailed description on the three categories of predictive metrics is as
follows. First, measuring the memory intensity of a particular kernel can be
acquired by three metrics: memory-to-compute ratio, the number of computing
instructions, and the number of memory instructions. They determine whether the

Fig. 7.10 Kernel offloading mechanism and concurrent kernel management mechanism

7 PIM Software Stack 155

Table 7.1 Metrics for predicting compute engine affinity and execution time

Primary category Predictive metric Static/dynamic

Memory intensity of kernel Memory-to-compute ratio Static

Number of compute instructions Static

Number of Memory Instructions Static

Available parallelism in the kernel Number of CTAs Dynamic

Total number of threads Dynamic

Number of thread instructions Dynamic

Shared memory intensity of kernel Total number of shared memory instructions Static

kernel requires higher bandwidth or higher computing power. Depending on these
metrics, the model can identify which computation cores can execute such kernel
better. Second, kernel parallelism can be obtained in dynamic runtime using the
number of cooperative thread arrays (CTAs). A high number of CTAs in a kernel
means that the kernel has high parallelism, and a GPU with many cores can handle
such kernels efficiently. Third, the shared memory intensity of a kernel is measured
by the total number of shared memory instructions which tells how much a kernel
reuses data. With the high total number of shared memory instructions, the kernel
does not require high off-chip DRAM bandwidth. It means that the kernel has less
chance of causing a memory bottleneck. In this case, the main GPU can handle
better. In addition, the authors also propose a logistic regression model to predict
the affinity of a kernel using these metrics, as written in Eq. 7.2.

δ(t) = et

et + 1
(7.2)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δ(t) = Model Output (0 if δ(t) < 0.5, 1 else if δ(t) ≥ 0.5)

t = α0 + α1x1 + α2x2 + α3x3 + α4x4 + α5x5 + α6x6 + α7x7

αi = Coefficients of the Regression Model

xi = Predictive Metrics/Variables (Table 7.1)

(7.3)

The regression model uses a total of 25 applications, where 60% and 40% of them
are used for training and testing, respectively. As a result, the model can accurately
predict a kernel with 83% accuracy.

For the other runtime technique, the authors propose a new concurrent kernel
management mechanism for both GPU and PIM computation units with three key
information: kernel dependency information, affinity prediction model, and execu-
tion time prediction model. Kernel dependence graph is obtained by read-after-write
(RAW) dependencies across the kernels by profiling the whole application’s kernel
execution. It helps to determine which kernels can execute in parallel. The affinity
prediction model is obtained by the logistic regression model described above. It

156 D. Kim and J.-Y. Kim

determines which computation cores can execute each kernel. The execution time
prediction model predicts the execution time of a kernel on each computation core.
The equation for the execution time prediction is shown in Eq. 7.4 and is obtained
by the linear regression model.

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + β6x6 + β7x7 (7.4)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y = Model Output (Predicted Execution Tim)

βi = Coefficients of the Regression Model

xi = Predictive Metrics/Variables (Table 7.1)

Bins

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1 (very Low) if y < 10K

2 (Low) if 10K < y < 500K

3 (Medium) if 500K < y < 5M

4 (High) if 5M < y < 50M

5 (very High) if 50M < y

(7.5)

The equation uses the same metrics used in the affinity prediction model in
Table 7.1. The information on execution time helps balance the kernels between
computation cores and minimizes the under-utilization issue. For example, if two
independent kernels have an affinity toward the same computation core while the
other computation core has no kernel to execute on, it suffers from under-utilization
of hardware resources. In this case, it is better to offload a kernel with a lower
execution time to an underutilized computation core, reducing the execution time of
whole kernels and the under-utilization issue.

7.5 Cache Coherence

In a uni-processor computer system, a single core does all the work and manages
the data in memories. Even with a change in a value in any memory location, it does
not affect the correctness of the computation since the single core can always see
latest data. On the other hand, in a multi-processor computer system, this may not
always be true. When multiple processors are working simultaneously on the same
data locations, they can access them freely as long as any core does not modify the
data. However, once one processor modifies the data, the other processors may not
acknowledge the change of the data in their local caches. This situation is when
cache coherence protocol comes into play. Cache coherence protocol manages to
write permission to each cache of the core to update or invalidate stale data value. It
also handles the arbitration of requests from multiple cores to the same memory

7 PIM Software Stack 157

address. As a result, all the cores can see the valid data anytime, even if they
simultaneously work on the same data.

Cache coherence mechanism could also apply in PIM architecture and is a
primary challenge for enabling general-purpose PIM execution. If we consider
PIM units as a conventional multi-processor architecture, we can apply traditional
cache coherence protocol. PIM can be programmed as multi-core programming
based on traditional shared memory with the host processor. As a result, the PIM
programming model becomes simple, and PIM architecture can easily turn to
general-purpose systems. However, applying traditional cache coherence protocol to
PIM causes a significant overhead in off-chip memory bandwidth with many fine-
grained coherence message transactions. As a result, it reverses the main benefit
of PIM, high bandwidth and low latency execution. Traditional cache coherence
protocol in traditional multi-processor architecture does not have this issue since it
can exploit the wide bandwidth of on-chip shared interconnect. Several solutions
proposed by previous researches [1, 7, 11–13] suggest some restrictions on the
programming model with cache bypass policy, writeback, and message passing
based mechanism. For example, Ahn et al. [11] propose to use message passing to
communicate between PIM cores and CPU caches. HBM-PIM [1] and GraphPIM
[13] use cache bypassing policy for offloading target. It makes a part of the memory
region uncacheable and lets all memory requests bypass the cache hierarchy and
send write requests directly to memory. Ahn et al. [12] use back-invalidation or
writeback for the cache block before and after PIM execution. Hsieh et al. [7]
propose to use write-through for cache coherence between GPU and PIM. These
mechanisms could work for applications that share not so much data between PIM
and the host. However, this might not always be true if tremendous data is shared
between PIM and the host. All these restriction-based mechanisms could cause
a degradation in performance by forcing data to write back or write through to
memory frequently rather than staying in a cache.

Regarding this issue, Boroumand et al. [14] propose a new coherence mechanism
called coherence for near data accelerators (CoNDA), as shown in Fig. 7.11. The
authors also analyze three different existing coherence mechanisms for near data
accelerator (NDA): Non-cacheable approach (NC), coarse-grained coherence (CG),
and fine-grained coherence (FG).

First, the non-cacheable mechanism forces the CPU to write data to memory
when the CPU has to update data, enabling NDA always to see valid data. It works
well in a specific condition when the CPU hardly accesses the NDA memory,
while it works poorly with most of the cases when the CPU accesses the NDA
memory frequently. The authors evaluate three different graph applications from a
multi-threaded graph framework called Ligra [15]: Connected Components, Radii,
and PageRank. For the dataset, it uses arXiv and Gnutella25 [16]. Figure 7.12
shows the memory system’s energy consumption and speedup graph of different
coherence mechanisms on different applications. As shown in the graphs, the
energy consumption and the performance of the non-cacheable approach are worse
than CPU-only due to frequent accesses made by the CPU threads to NDA
memory. Second, coarse-grained coherence is another type of coherence mechanism
that optimizes the enforcement of conventional coherence. It forces monitoring

158 D. Kim and J.-Y. Kim

Fig. 7.11 Organization of CoNDA architecture

Fig. 7.12 Energy consumption and speedup of different existing cache coherence protocols

the coherence of much larger memory regions, which helps avoid unnecessary
broadcasts and cache-tag look-ups. This mechanism works well on the NDA having
limited shared data with the CPU threads, while it works poorly with much more
shared data as it causes unnecessary data movement between the CPU and the NDA.
The CPU must write all cache lines within the same NDA memory region even
though the NDA only accesses a few memory addresses. As shown in the graph,
coarse-grained coherence is 0.4% slower than CPU-only and is still not a good
fit for NDA for many applications. Third, fine-grained coherence is a traditional
protocol and works well with the applications involving irregular memory accesses.
However, the limited off-chip bandwidth between the memory and the CPU cannot
handle unnecessary off-chip data movements.

7 PIM Software Stack 159

Fig. 7.13 CoNDA operation flow

Instead of applying the existing coherence protocols, the authors propose a new
efficient cache coherence protocol for NDA called CoNDA, which executes NDA
on optimistic execution mode, as shown in Fig. 7.13. Its new protocol works as
follows. First, let the NDA always execute on optimistic execution mode. The NDA
stops issuing any coherence request to the CPU during optimistic execution mode
and keeps track of memory accesses. Also, it assumes that it always has coherence
permission to the CPU without even looking at the CPU coherence directory. It
guarantees that none of the modified data during the optimistic execution mode is
written to memory. Second, after the NDA completes optimistic execution mode,
it starts dealing with the coherence requests that could not be issued during the
optimistic execution mode. It only works on the shared data that was actually used
during the execution using the memory access tracking information, including the
addresses of all NDA read, NDA write, and CPU write. CoNDA compares this
information to find necessary coherence requests. Depending on the cases, CoNDA
either makes the NDA invalidate or re-execute all the un-committed updates or the
CPU to resolve the necessary coherence requests. The authors evaluate the CoNDA
protocol by comparing it to NDA execution using NC, CG, FG, and ideal-NDA.
Ideal-NDA is a reference model that does not count any coherence overhead, thus
giving the best performance result. The speedup performance analysis is also shown
in Fig. 7.12. It appears that both CG and NC hardly benefit from PIM due to its high
cost in maintaining the coherence. FG, on the other hand, achieves 44.9% of Ideal-
NDA’s performance benefits. However, CoNDA achieves the most benefits among
the other coherence protocols. It appears that CoNDA improves performances over
CPU-only by 66.0%. The author shows that CoNDA effectively reduces the number
of unnecessary coherence requests that travel through off-chip buses.

References

1. S. Lee, S.-h. Kang, J. Lee, H. Kim, E. Lee, S. Seo, H. Yoon, S. Lee, K. Lim, H. Shin, J.
Kim, S. O, A. Iyer, D. Wang, K. Sohn, N.S. Kim, Hardware architecture and software stack
for PIM based on commercial DRAM technology: industrial product, in 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture (ISCA). IEEE, Piscataway (2021),
pp. 43–56

160 D. Kim and J.-Y. Kim

2. M. He, C. Song, I. Kim, C. Jeong, S. Kim, I. Park, M. Thottethodi, T.N. Vijaykumar, Newton:
a DRAM-maker’s accelerator-in-memory (AiM) architecture for machine learning, in 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE,
Piscataway (2020), pp. 372–385

3. A. Boroumand, S. Ghose, Y. Kim, R. Ausavarungnirun, E. Shiu, R. Thakur, D. Kim, A.
Kuusela, A. Knies, P. Ranganathan, O. Mutlu, Google workloads for consumer devices:
mitigating data movement bottlenecks, in Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and Operating Systems
(2018), pp. 316–331

4. Y. Kim, V. Seshadri, D. Lee, J. Liu, O. Mutlu, A case for exploiting subarray-level parallelism
(SALP) in DRAM, in 2012 39th Annual International Symposium on Computer Architecture
(ISCA). IEEE, Piscataway (2012), pp. 368–379

5. V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M.A. Kozuch, O. Mutlu,
P.B. Gibbons, T.C. Mowry, Ambit: in-memory accelerator for bulk bitwise operations using
commodity DRAM technology, in 2017 50th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, Piscataway (2017), pp. 273–287

6. V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhimenko, Y. Luo, O. Mutlu,
P.B. Gibbons, M.A. Kozuch, T.C. Mowry, RowClone: Fast and energy-efficient in-DRAM
bulk data copy and initialization, in Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture (2013), pp. 185–197

7. K. Hsieh, E. Ebrahimi, G. Kim, N. Chatterjee, M. O’Connor, N. Vijaykumar, ..., S.W.
Keckler, Transparent offloading and mapping (TOM) enabling programmer-transparent near-
data processing in GPU systems. ACM SIGARCH Comput. Archit. News 44(3), 204–216
(2016)

8. S. Che, M. Boyer, J. Meng, D. Tarjan, J.W. Sheaffer, S.H. Lee, K. Skadron, Rodinia: a
benchmark suite for heterogeneous computing, in 2009 IEEE International Symposium on
Workload Characterization (IISWC). IEEE, Piscataway (2009), pp. 44–54

9. A. Bakhoda, G.L. Yuan, W.W. Fung, H. Wong, T.M. Aamodt, Analyzing CUDA workloads
using a detailed GPU simulator, in 2009 IEEE International Symposium on Performance
Analysis of Systems and Software. IEEE, Piscataway (2009), pp. 163–174

10. A. Pattnaik, X. Tang, A. Jog, O. Kayiran, A.K. Mishra, M.T. Kandemir, O. Mutlu, C.R.
Das, Scheduling techniques for GPU architectures with processing-in-memory capabilities, in
Proceedings of the 2016 International Conference on Parallel Architectures and Compilation
(2016), pp. 31–44

11. J. Ahn, S. Hong, S. Yoo, O. Mutlu, K. Choi, A scalable processing-in-memory accelerator
for parallel graph processing, in Proceedings of the 42nd Annual International Symposium on
Computer Architecture (2015), pp. 105–117

12. J. Ahn, S. Yoo, O. Mutlu, K. Choi, PIM-enabled instructions: a low-overhead, locality-aware
processing-in-memory architecture, in 2015 ACM/IEEE 42nd Annual International Symposium
on Computer Architecture (ISCA). IEEE, Piscataway (2015), pp. 336–348

13. L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, H. Kim, GraphPIM: enabling instruction-level
PIM offloading in graph computing frameworks, in 2017 IEEE International Symposium on
High Performance Computer Architecture (HPCA). IEEE, Piscataway (2017), pp. 457–468

14. A. Boroumand, S. Ghose, M. Patel, H. Hassan, B. Lucia, R. Ausavarungnirun, K. Hsieh,
N. Hajinazar, K.T. Malladi, H. Zheng, O. Mutlu, CoNDA: efficient cache coherence support
for near-data accelerators, in Proceedings of the 46th International Symposium on Computer
Architecture (2019), pp. 629–642

15. J. Shun, G.E. Blelloch, Ligra: a lightweight graph processing framework for shared memory,
in Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (2013), pp. 135–146

16. SNAP: Stanford Network Analysis Project. http://snap.stanford.edu/

http://snap.stanford.edu/

Chapter 8
Conclusion

Joo-Young Kim, Bongjin Kim, and Tony Tae-Hyoung Kim

Modern computing systems based on von Neumann architecture, which broadly
consists of the processor and memory device, suffer from the data movement
problem between the two devices. It becomes the major performance bottleneck of
the system called von Neumann bottleneck, as the performance gap between the two
separate devices gets widened. Although they leverage data locality and memory
hierarchy to mitigate the bottleneck, a large fraction of time and energy is spent
on just moving data from the memory to the processor for actual computations.
Since the deep learning revolution of the 2010s, the world has quickly moved
toward using artificial intelligence (AI) and machine learning (ML) technologies.
As these new technologies involve a few orders of magnitude more data than
traditional workloads, the data movement problem becomes a real challenge in
modern computing systems. In addition, Moore’s law that fuels the computer chip
performance improvement with the process scaling is also approaching to an end.

Recently, processing-in-memory (PIM) architecture that combines the process-
ing units into the memory has gotten attention to overcome this crisis. This unified
device approach can replace expensive external data movement with much faster
and cheaper internal data movement. It is a paradigm shift from processor-centric
design to memory-centric design. Trying to solve the von Neumann bottleneck,

J.-Y. Kim (�)
School of Electrical Engineering (E3-2), KAIST, Daejeon, South Korea
e-mail: jooyoung1203@kaist.ac.kr

B. Kim
University of California Santa Barbara (UCSB), Santa Barbara, CA, USA
e-mail: bongjin@ucsb.edu

T. T.-H. Kim
School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore,
Singapore
e-mail: thkim@ntu.edu.sg

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J.-Y. Kim et al. (eds.), Processing-in-Memory for AI,
https://doi.org/10.1007/978-3-030-98781-7_8

161

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98781-7_8&domain=pdf
mailto:jooyoung1203@kaist.ac.kr
mailto:bongjin@ucsb.edu
mailto:thkim@ntu.edu.sg
https://doi.org/10.1007/978-3-030-98781-7_8

162 J.-Y. Kim et al.

PIM is especially effective for data-intensive workloads like AI/ML and big data
applications. However, there are also many challenges ahead; the fabrication process
for memory is not accessible, and chip designers need to carefully design the merged
logic with the physical design constraints to maximize internal memory bandwidth.
In this book, we triage and investigate the PIM technology according to the memory
type it is based on: SRAM-based PIM, DRAM-based PIM, and ReRAM-based PIM.
For each PIM category, we thoroughly cover the basic operation of the memory,
circuit component designs, macro designs, and entire architectures and operations.
The summary for each category is as follows.

SRAMs are typically used as cache memory placed near the processor in
conventional digital systems following von Neumann architecture. Compatibility
with the standard logic CMOS process and the low-density nature of the larger
bitcell size (compared to other memory technologies) has driven the technology
to be used as a small capacity and high-speed on-chip memory. SRAM-based
PIM architecture naturally became a popular choice based on the solid integration
compatibility that enables the additional computing feature to the regular memory
operation without raising new concerns in manufacturing feasibility and the efficacy
of the assigned role as a processing element. SRAM-based PIM has primary design
challenges similar to the challenges in the design of SRAM for cache memory. For
example, low storage density, limited bitline dynamic range, noise margin issue, and
variation-induced nonlinearity are the challenges for both SRAM-based cache and
PIM macros. Other challenges raised by the additional computing task assignment
for SRAM PIM macros are data conversion overhead, voltage–frequency scaling,
macro scalability for different DNN networks, and DNN parameter data compres-
sion. For most PIM implementation of DNN applications, the function of the PIM
macro is simple multiply-and-accumulate (MAC) or multiply-and-average (MAV).
However, additional mathematical operations must be processed in the preceding or
following digital blocks in the system (or system-on-chip). As a result, PIM macros
are rarely designed as a stand-alone processor but instead are built as a co-processor
or an accelerator in larger ASICs, FPGAs, or SoCs. For this reason, input and
output data of PIM macros that operate in the mixed-signal domain must provide
some form of data conversion layer in its functional data flow pipeline. The data
conversion in mixed-signal SRAM-based PIM is a significant design overhead in
latency, energy consumption, and hardware footprint. Besides, application flexibility
is another concern as the conversion blocks such as DAC/ADC are implemented in
fixed precision. Custom-designed SRAM cells typically target to resolve SRAM-
specific issues and utilize highly optimized supply voltage and timing schemes
while trading off the configuration flexibility of the PIM macro. Data flow and
architecture-level improvements are required to achieve the scalability of the PIM
macro. Digital implementation of the PIM macro alleviates many of the stated
concerns, but it is not a complete solution and remains an active research area.
The application parameter data storage is another critical issue for SRAM-based
PIM due to its low-density memory bitcell array. While there is no physical
solution to map millions of high-precision parameters into the SRAM without
sacrificing efficiency, algorithmic improvements can resolve the issue through data

8 Conclusion 163

compression. Some promising approaches in this area are parameter quantization,
sparse matrix operation, and multi-dimensional tensor reduction.

Using only a single transistor and a capacitor for the memory cell, DRAM has
two good properties for the memory: a high capacity and a high speed. For this
reason, DRAM has been used as a main memory of the computing systems and
is commercially successful in the memory market. Although DRAM technology
has been developed focusing on cell density, it provides a mature process solution
including logic circuit implementation needed for PIM. Many approaches have been
proposed to apply in-memory processing to DRAM. Based on the level of logic
integration, we triaged the DRAM-based PIM into three groups: bulk bitwise PIM,
bank-level PIM, and 3-d PIM. The bulk bitwise PIM integrates gate-level logic at
the bitline sense amplifiers to perform row-wise processing, utilizing the maximum
internal data bandwidth. However, due to the extremely narrow pitch of a DRAM
cell, adding a simple logic gate, there may not be possible. Another hurdle is that
it is hard to perform complex functions such as reduction, as it applies the same
low-level operations on the entire row. The next option for PIM is bank-level, which
integrates processing logic after column decoders in memory subarray. Since the
processing logic can use the whole width of the memory subarray, not a single
cell pitch, it is affordable to add more logic functions in the space. In addition,
as every DRAM includes column decoders in the memory subarray, this method
does not have to modify any design up to the column decoder. Understandably,
bank-level PIM’s maximum bandwidth out of a memory bank is the same as the
regular DRAMs. Its achievable internal bandwidth is much smaller than the bulk
bitwise PIM, which integrates logic before the column decoders. To compensate
for this loss, bank-level PIM activates multiple banks at the same time. It also
supports custom and complex commands to enable PIM operations with multi-bank
activation. The types of logic added to bank-level PIM can be varied: some added
dedicated logic such as matrix multiplication and the other added programmable
cores. The last DRAM-based PIM architecture is 3-d PIM, which utilizes both the
base logic die and memory dies in a 3-d stacked memory. It can have more design
choices using multiple dies. For example, the control components in the logic die
can control the execution components in DRAM dies in a 3-d vault architecture.
However, the realization of 3-d PIM can be difficult due to tight physical and timing
constraints among 3-d stacked dies. All the proposed 3-d PIM architectures are
evaluated only using simulation. Major DRAM vendors such as SK Hynix and
Samsung started to build their own DRAM-based PIM solutions. Both of them
chose the bank-level PIM approach to reuse the memory subarray and minimize
the changes in chip design. They also try to minimize the changes in DRAM
command protocol and software as well. The performance of the first realized PIM
chip on HBM is impressive but not astonishing; this is understandable considering
it integrates logic at the bank level. To increase the performance dramatically, we
need to integrate logic into the cell and sense amplifier level, which causes major
design changes in memory subarray. We also need to discover more memory-bound
applications that can benefit from DRAM-based PIM.

164 J.-Y. Kim et al.

ReRAM-based PIMs have attracted increasing attention primarily because of
its nonvolatility. Various edge computing devices will be benefited by ReRAM-
based PIMs particularly when high-density ReRAM’s high density and ultra-low-
power consumption during the standby mode are highly demanded. However, the
deployment of ReRAM PIMs in edge computing still needs to overcome several
challenges. One of the most critical challenges in ReRAM-based PIM is the ReRAM
fabrication technology readiness. Even though numerous ReRAM technology-
related research outcomes have been reported, it is generally true that ReRAM
technologies are not mature enough to be employed for commercial ReRAM-based
PIM design. It is also well known that many ReRAM devices show noticeably
different device characteristics such as resistance values of the high and low states,
set and reset voltage levels, and disturb-free read voltage. Since the variations in the
device characteristics are much more significant than that of CMOS devices, it is
challenging to utilize ReRAM technology for PIMs. Another critical obstacle to be
tackled is to realize the set and reset voltage compatible with CMOS technology’s
supply voltage. Currently, many ReRAM devices use the set and reset voltage
higher than the supply voltage of the mainstream CMOS technology. Even though
boosted voltage can be employed for the set and reset operations, it will create
device reliability issues. The high set and reset voltages become a more critical
issue when the weights stored in ReRAM-based PIMs need to be loaded or updated
frequently. In contrast to the set and reset voltage, it is necessary to increase the
disturb-free voltage for improving the MAC precision. In general, ReRAM-based
PIMs limit the bitline voltage similar to or less than 0.1–0.3 V. This will also
limit the maximum bitline current that can be generated for MAC results. Higher
bitline voltage will allow more room in generating more accurate MAC results.
ReRAM device endurance also affects the accuracy of ReRAM-based PIM. Even
though neural networks have a certain degree of tolerance to ReRAM-based PIM
accuracy degradation over time, significant endurance degradation will lead to
unacceptable performance deterioration. Even though ReRAM technology issues
are more fundamental, there are also other ReRAM-based PIM design challenges.
In general, ReRAM-based PIMs have been used for relatively lower output preci-
sion. To overcome this limitation, CMOS design techniques for improving output
precision should be more advanced. Digital ReRAM-based PIM can be a solution
for improving the output precision by using almost-digital signals in the ReRAM-
based PIM. In addition, it is also necessary to train ReRAM-based neural networks
including the non-idealities of the ReRAM-based PIM. This will reduce the error
between the trained weights using the ReRAM-based PIM and those using ideal
training algorithms, which will improve the inference accuracy.

In addition, we have added a dedicated section for the PIM designs for ML
training. Since the training process produces more intermediate data and requires
more data movement than the inference, we think PIM has more opportunity to get
performance and energy gain. Although the training process’s complex computation
and data flow make it hard to design, there is more room for research. Finally,
we discuss the issues on the software stack to integrate the PIM hardware into a
computing system. To make the PIM hardware be widely adopted in the future, its

8 Conclusion 165

full potential should be easily exploited by end-users. For that, a renewed software
stack for PIM covering programming language, library, runtime, and the device
driver is essential. We hope this book can help readers understand PIM technology
with a holistic view, from lower-level circuit implementation to system integration.
We also hope that this book can give readers ideas and directions for their future
research.

	Contents
	1 Introduction
	1.1 Hardware Acceleration for Artificial Intelligence and Machine Learning
	1.2 Machine Learning Computations
	1.2.1 Fully Connected Layer
	1.2.2 Convolutional Layer
	1.2.3 Recurrent Layer

	1.3 von Neumann Bottleneck
	1.3.1 Memory Wall Problem
	1.3.2 Latest AI Accelerators with High-Bandwidth Memories

	1.4 Processing-in-Memory Architecture
	1.4.1 Paradigm Shift from Compute to Memory
	1.4.2 Challenges

	1.5 Book Organization
	References

	2 Backgrounds
	2.1 Basic Memory Operations
	2.1.1 SRAM Basics
	2.1.2 DRAM Basics
	2.1.3 ReRAM Basics

	2.2 PIM Fundamentals
	2.3 PIM Output Read-out
	2.4 PIM Design Challenges
	References

	3 SRAM-Based Processing-in-Memory (PIM)
	3.1 Introduction
	3.2 SRAM-Based PIM Cell Designs
	3.2.1 Standard 6T SRAM-Based PIM
	3.2.2 Custom SRAM Cells for PIM

	3.3 SRAM-Based PIM Macro Designs
	3.4 Summary
	References

	4 DRAM-Based Processing-in-Memory
	4.1 Introduction
	4.2 Basic DRAM Operation
	4.3 Bulk Bitwise Processing-in-Memory
	4.3.1 AMBIT
	4.3.1.1 Triple Row Activation
	4.3.1.2 AMBIT DRAM Organization
	4.3.1.3 Fast Row Copy
	4.3.1.4 Bulk Bitwise NOT
	4.3.1.5 Row Addressing
	4.3.1.6 AMBIT Command Execution
	4.3.1.7 Evaluation

	4.3.2 DRISA
	4.3.2.1 Motivation
	4.3.2.2 Cell Microarchitectures
	4.3.2.3 Computing Using NOR Operation
	4.3.2.4 Evaluation

	4.4 Bank-Level Processing-in-Memory
	4.4.1 Newton
	4.4.1.1 Motivation
	4.4.1.2 Architecture
	4.4.1.3 Newton's Operation
	4.4.1.4 Evaluation

	4.4.2 HBM-PIM
	4.4.2.1 Motivation
	4.4.2.2 HBM-PIM Architecture
	4.4.2.3 HBM-PIM Controller
	4.4.2.4 Programmable Computing Unit
	4.4.2.5 Operation Flow
	4.4.2.6 Data Movements
	4.4.2.7 Implementation Results

	4.5 3-D Processing-in-Memory
	4.5.1 Neurocube
	4.5.2 Tetris
	4.5.3 iPIM

	References

	5 ReRAM-Based Processing-in-Memory (PIM)
	5.1 Introduction
	5.2 Basic ReRAM PIM Operation
	5.3 Multiplication in ReRAM PIMs
	5.3.1 Binary Multiply
	5.3.2 Multiplication with Ternary Weight
	5.3.3 Multi-bit Multiplication
	5.3.3.1 Multiplication Using One Cycle and One Column
	5.3.3.2 Parallel-Input Parallel-Weight (PIPW)
	5.3.3.3 Serial-Input Parallel-Weight (SIPW)

	5.4 ReRAM PIM Architecture
	5.4.1 Introduction
	5.4.2 Non-volatile PIM Processor
	5.4.3 ReRAM PIM Architecture
	5.4.4 ADCs and DACs in ReRAM PIM

	5.5 ReRAM Co-processor
	5.5.1 Architecture
	5.5.2 Mixed-Signal Interface
	5.5.3 ADCs and DACs Operation

	5.6 Transposable ReRAM for Inference and Training
	5.7 Bitline Sensing for MAC Accuracy Improvement
	5.7.1 Variations in Bitline Current
	5.7.2 Input-Aware Dynamic Reference Generation
	5.7.3 Weighted Current Generation
	5.7.3.1 PIM Macro Architecture
	5.7.3.2 Serial-Input Non-weighted Product (SINWP)
	5.7.3.3 Down-scaling Weighted Current Translator (DSWCT)

	5.8 Versatile ReRAM-Based PIM Functions
	5.8.1 Versatile PIM Architecture
	5.8.2 2T2R ReRAM Bit Cell for Versatile Functions
	5.8.2.1 Basic Memory Operation
	5.8.2.2 TCAM Operation
	5.8.2.3 Logic-in-Memory Operation
	5.8.2.4 Dot Product Operation

	5.9 Summary
	References

	6 PIM for ML Training
	6.1 Introduction
	6.2 Training Computations
	6.2.1 Feed-Forward Propagation
	6.2.2 Backward Propagation
	6.2.3 Gradient Calculation and Weight Update

	6.3 SRAM-Based PIM for Training
	6.3.1 Two-Way Transpose SRAM PIM
	6.3.1.1 SRAM Compute-in-Memory Macro Design
	6.3.1.2 In-memory Multiplication for Forward and Backward Propagation

	6.3.2 CIMAT
	6.3.2.1 7T and 8T Transpose SRAM Cell Design
	6.3.2.2 Weight Mapping Strategies and Data Flow
	6.3.2.3 Pipeline Design

	6.3.3 HFP-CIM
	6.3.3.1 Heterogeneous Floating-Point Computing Architecture
	6.3.3.2 Overall Processor Design and Sparsity Handling

	6.4 ReRAM-Based PIM for Training
	6.4.1 PipeLayer
	6.4.1.1 Architecture of PipeLayer
	6.4.1.2 Data Mapping and Parallelism of PipeLayer

	6.4.2 FloatPIM
	6.4.2.1 FloatPIM's Digital Operation
	6.4.2.2 Hardware Architecture
	6.4.2.3 Training of FloatPIM

	References

	7 PIM Software Stack
	7.1 PIM Software Stack Overview
	7.1.1 PIM Software Stack Challenges

	7.2 PIM Offloading Execution
	7.3 PIM Data Mapping
	7.4 PIM Execution Scheduling
	7.5 Cache Coherence
	References

	8 Conclusion

